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1 Introduction

To succeed in mathematics you need a wide array of tools to have a chance
of finding one for the problems you encounter. Here we discuss one tool often
overlooked in competitive mathematics, the usage of complex numbers to solve
geometry problems. Infamous for creating long and unintuitive solutions, com-
plex solutions are often avoided in favour of synthetic solutions but given the
right circumstances a complex solution might actually be the best option. Theo-
retically, all geometry problems can be solved using complex numbers. However,
the practicality differs immensely. Sometimes it will just be too messy.

1.1 Forms

Complex numbers can be written using different forms.

Rectangular form Written on the form z = a+ bi

Polar form Written on the form z = r(cos θ + i sin θ)

Exponential form Written on the form z = reiθ

r is the distance to the point from the origin. θ is the angle the complex number
(as a vector) makes with the real axis. Positive angles go counterclockwise and
negative angles clockwise. The angle, when speaking of complex numbers, is
called the argument.

2 Angles

A frequent application for complex numbers is determining the angle between
two lines. The easiest example of this is if you have two complex numbers and
you represent both using two vectors. In order to calculate the angle between
these two vectors you take the quotient of the numbers. When multiplying two
complex numbers you add their arguments. Similarly, when you divide, you
subtract the arguments and this difference will be the angle between the lines.

z1z2 = r1e
iθ1r2e

iθ2 = r1r2e
i(θ1+θ2)

z1

z2
=
r1e

iθ1

r2eiθ2
=
r1

r2
ei(θ1−θ2)

Most of the time you will not have a single number which is representative of
a line, but rather two numbers which lay on the line, say a and b. The direction
of the line will be the equivalent of a vector going from a to b. This vector can
be written as b− a.

If you have two lines and want to find the angle between them, you may
take the quotient. However, if you do not have any actual numbers, then you
cannot interpret your answer. This is solved by using a property of conjugate
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numbers. If your quotient is real, then your answer will be its own conjugate.
Take two lines and let a and b lie on line 1 and c and d on line 2. If the two
lines are parallel then the following relationship will be true

a− b
c− d

=

(
a− b
c− d

)

a− b
c− d

=
a− b
c− d

a− b
a− b

=
c− d
c− d

If two lines are perpendicular to each other then it means that their quotient
would be a purely imaginary number. The complex conjugate of an imaginary
number is the original number with an inverted sign. Using the same lines as
in the previous example, the relationship for perpendicular lines is

a− b
c− d

= −
(
a− b
c− d

)

a− b
c− d

= −a− b
c− d

a− b
a− b

= −c− d
c− d

There is another useful relation which can be derived from the relationship
regarding parallel lines and collinearity. Take three points a, b and c. If a vector
going from a to b is parallel to a vector going from a to c then they are collinear.
This will result in the relation

a− b
a− b

=
a− c
a− c

Theorem 2.1. Two lines AB and CD, with corresponding complex numbers,
a,b,c and d are:

(i) Parallel if and only if a−b
a−b = c−d

c−d

(ii) Perpendicular if and only if a−b
a−b = − c−d

c−d

Theorem 2.2. A, B and C are collinear if and only if a−b
a−b = a−c

a−c
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3 Circles

Circles often pose a problem for solutions involving complex numbers as most
ways of expressing them quickly become unwieldy in more difficult problems.
There is however one exception. At the heart of almost every complex solution
lies the unit circle. By identifying a prominent circle in the problem statement
and letting that circle be the unit circle the solution can be massively simplified
using the following properties.

Theorem 3.1. Given two points a and b on the unit circle it holds that

(i) a = 1
a

(ii) a−b
a−b = −ab

(iii) The tangents to the unit circle at a and b intersect at 2ab
a+b

Figure 1: Illustration to Theorem 3.1 (iii). The tangents of two points a and b
on the unit circle meet at a point p, where p = 2ab

a+b

Proof. (i) follows directly from the fact that aa = |a|2 (|a| = 1 since a lies on
the unit circle).
Using (i), (ii) can now be proven as
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a− b
a− b

=
a− b
1
a −

1
b

=
(a− b)ab
b− a

= −ab

(iii) is a little harder to prove. AO and PA are perpendicular which means that
they can be expressed as

P − a
P − a

=− a

a

P − a =− a2(P − 1

a
)

− P
a2

+
2

a
=P

Due to the symmetry of the problem this expression also applies to BO and PB.
Then we get the equation

− P
a2

+
2

a
=− P

b2
+

2

b

P

b2
− P

a2
=

2

b
− 2

a

P =
2
b −

2
a

1
b2 −

1
a2

P =
(2a− 2b)ab

a2 − b2

P =
2ab

a+ b

Problem 3.1. Given a circumscribed quadrilateral ABCD, let M and N be
the midpoints of the diagonals AC and BD. If O is the incenter, prove that M ,
N , and O are collinear.

Proof. Let the inscribed circle of ABCD be the unit circle. According to The-
orem 2.1 (iii) it is sufficient to prove that

m− o
m− o

=
n− o
n− o
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Figure 2: The inscribed angle theorem tells us that ∠AOC = 2∠ACB. It can
be proven using complex numbers, see proof to Theorem 3.2.

since O is the origin we need to prove that m
m = n

n . Let p, q, r, s be the points of
tangency of the incircle with the sides ab, bc, cd, da respectively. Using Theorem
3.1 (iii) we have

m =
a+ c

2
=

ps

p+ s
+

qr

q + r
=
pqs+ prs+ pqr + qrs

(p+ s)(q + r)

the conjugate of m will then be m = p+q+r+s
(p+s)(q+r) . Dividing m by m now gives us

m

m
=
pqs+ prs+ pqr + qrs

p+ q + r + s

Notice that this expression is symmetric in p, q, r and s. Similarly, we will
therefore get the same result for n

n . This gives us that m
m = n

n .

These properties, unique to the unit circle, makes many problems trivial that
would otherwise be infeasable. Complex solutions are therefore best reserved
for problems containing no more than one predominant circle. As long as that is
true they can produce short and simple proofs. Consider for example a complex
proof of the inscribed angle theorem.

Theorem 3.2 (Inscribed Angle Theorem). Given three points A, B and C on
a circle with midpoint O ∠AOB = 2∠ACB.

Proof. WLOG we assume the circle to be the unit circle and represent the points
A, B and C as complex numbers a, b and c respectively. Since a, b and c lie
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on the unit circle O will be 0. As mentioned earlier, the angle between two
lines can be determined by a quotient. We want the angles ∠AOB and ∠ACB.
However, they are going to be differing by a factor of 2. In order to double the
angle of a complex number you square it

z2 =
(
reiθ

)
= r2ei2θ

The problem now is that the magnitudes are squared as well. This is solved by
ensuring that the length of all differences are 1. The length from the center of
the unit circle to a and b is simply 1 by definition. To get the vector from a to
c to have the length 1, you need to divide the vector by its own length. With
all of this in mind one gets the expression

(
c−a
|c−a|
c−b
|c−b|

)2

(
|c− b|
|c− a|

· c− a
c− b

)2

|c− b|2

|c− a|2
· (c− a)2

(c− b)2

(c− b)(c− b)
(c− a)(c− a)

· (c− a)2

(c− b)2

c− a
c− a

· c− b
c− b

−ca · 1

−cb

a

b
a
b is the angle between the A, O and B which we have now shown to be

twice that of angle between A, C and B.

4 Triangles

Equipped to deal with angles and circles the only thing that remains is triangles.
Solving geometry problems without a way of expressing triangle centers would be
a daunting task. Luckily they can often be expressed using simple expressions.
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Perhaps the simplest triangle center to express using complex numbers is
the centroid, the point within the triangle where the three medians meet. For
a given triangle ABC the centroid can be expressed as a+b+c

3 .
Expressing the incenter and circumcenter (the center of the inscribed circle

and circumscribed circle respectively) in the general case is not as simple. This
can however easily be solved by letting the incircle or circumcircle be the unit
circle. In the former case it is then often beneficial to express every point in
terms of the tangent points instead of the triangle corners. By doing this the
incenter or circumcenter simply becomes 0.

Lastly, the orthocenter (the point where the altitudes of a triangle meet)
also benefits from having its triangle corners lie on the unit circle. As long as
this is the case the orthocenter of a triangle ABC can also be expressed in a
simple expression as a+ b+ c.

Proof. Let h = a+b+c. Using the perpendicular theorem, we get that AH and
BC are perpendicular, if and only

h− a
b− c

= −
(
h− a
b− c

)

b+ c

b− c
= −b+ c

b− c

since b and c are on the unit circle, we can plug in b = 1
b and similarily c = 1

c .
From that we obtain:

b+ c

b− c
= −

1
b + 1

c
1
b −

1
c

= −b+ c

c− b
=
b+ c

b− c

We have proven that AH and BC are perpendicular. By similar reasoning, BH
and AC are perpendicular, as well as CH and AB. Thus h is the orthocenter of
the triangle

Using this, problems featuring triangles and triangle centers can swiftly be
dealt with. As an example consider the following problem.

Problem 4.1. Let S be the circumcenter and H the orthocenter of ∆ABC.
Let Q be the point such that S bisects HQ and denote by T1, T2, and T3,
respectively, the centroids of ∆BCQ, ∆CAQ and ∆ABQ. Prove that AT1 =
BT2 = CT3 = 4

3R, where R denotes the circumradius of ∆ABC.
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Figure 3: Illustration to problem 4.1. S is the circumcenter of 4ABC and also
the origin the complex plane. The circumscribed circle of 4ABC is the unit
circle. H is the orthocenter of 4ABC and Q is the reflection of H through S.
T1, T2 and T3 are the centroids of ∆BCQ, ∆CAQ and ∆ABQ respectively.

Proof. Let the circumcenter of 4ABC be the unit circle in the complex plane
and a, b and c be complex number representing A, B and C respectively. The
orthocenter h can be expressed as a+ b+ c (theorem). Since s bisects HQ, q is
the reflection of h over s, the origin. Thus, q = −h = −a− b− c. The centroid

of BCQ is (q+b+c)
3 which simplifies to −a3 . We want to find the distance between

a and −a3 , i.e.,|a− (−a3 )| = | 43a| =
4
3 . By symmetry this distance is the same as

BT2 and CT3.

Problem 4.2. (IMO 2008) An acute-angled triangle ABC has orthocenter H.
The circle passing through H with center the midpoint of BC intersects the
line BC at A1 and A2. Similarly, the circle passing through H with center the
midpoint of CA intersects the line CA at B1 and B2, and the circle passing
through H with center the midpoint of AB intersects the line AB at C1 and
C2. Show that A1, A2, B1, B2, C1, C2 lie on a circle.
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Figure 4: Illustration to problem 4.2. We have also defined MA, MB and MC as
the midpoints and O as the circumcenter. We have also drawn the circumscribed
circle of the triangle.

Proof. We immediately recognize that if the points were to lie on a circle, its
center would have to be the circumcenter, O, because it would lie on the perpen-
dicular bisectors of the sides. Let the circumscribed circle of 4ABC be the unit
circle. As usual, we will denote the points’ complex counterpart as lowercase.
Since ∠OMBB2 is a right angle, we can use the Pythagorean Theorem to get
the distance to B2 from the distance to MB and the distance from MB to B2.
Since mb = a+c

2 and the distance from MB to B2 is the same as the distance
from MB to H, and that h = a+ b+ c we can conclude that:

|b2|2 = |mb|2 + |b2−mb|2 = |a+ c

2
|2 + |a+b+c− a+ c

2
|2 = |a+ c

2
|2 + |b+

a+ c

2
|2

Next we use the fact that the distance to a complex number squared is equal
to the complex number times its conjugate. Since a, b and c are on the unit
circle, their conjugate will be 1

a , 1
b and 1

c respectively.

|a+ c

2
|2 + |b+

a+ c

2
|2 =

(a+ c)(a+ c)

4
+ (b+

a+ c

2
)(b+

a+ c

2
)

=
(a+ c)( 1

a + 1
c )

4
+ (b+

a

2
+
c

2
)(

1

b
+

1

2a
+

1

2c
)

=
1

4
+

a

4c
+

c

4a
+

1

4
+ 1 +

b

2a
+

b

2c
+

a

2b
+

1

4
+

a

4c
+

c

2b
+

c

4a
+

1

4
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= 2 +
a

2b
+

a

2c
+

b

2a
+

b

2c
+

c

2a
+

c

2b

As previously mentioned this is the distance to b2. There is no need to check
the distance to b1 since we already know it will be the same since the circle’s
center will be the circumcenter. What’s left is doing the last few steps for one of
a1 and a2, and one of c1 and c2 to see that you end up with the same distance,
which proves that they lie on a circle. The steps are identical and result is the
same answer and is therefore left as an exercise for the reader. However, one
can argue that it is not necessary since the only difference in the other two cases
will be that either b and c swap places or a and b. Because of the symmetrical
nature of the result, it is clear that it would be the same regardless.

5 Transformations

In geometry it is important to be able to manipulate figures and points freely.
When using complex numbers this becomes easy thanks to a few relations.
Translation is easy, it is the same as with cartesian coordinates. You simply
add or subtract the number that represents the desired translation. Reflections
and rotations are not that difficult either.

The reflection of point z through the origin is, like with cartesian coordinates,
−z. This is frequently used when a point lies on the unit circle. The reflection
of point z1 through point z2 will therefore result in 2z2−z1. Intuitively, it could
be seen as taking the vector difference z2 − z1 and adding z2. Alternatively, it
could be seen as translating the coordinate system so that z2 gets translated
onto 0, reflecting z1 through 0, and translating back. Reflection of a point Z
over line AB can be written as:

z′ =
(a− b)z + ab− ab

a− b
If A and B both lie on the unit circle, it simplifies to:

z′ = a+ b− abz

These can be proven by first translating all of the points by taking −b so
that b gets translated onto the origin. Since the new line will go through the
origin you can simply rotate z− b around the origin by the argument difference
of z− b and a− b twice to get the reflection of z− b over the new line. One way
to express this new point is:

(a− b)(z − b)
(a− b)

The argument of the new point would be 2 ∗ arg(a − b) − arg(z − b) which is
equal to 2 ∗ (arg(a − b) − arg(z − b)) + arg(z − b) as described previously. It
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will also have the same distance to the origin as z − b since a−b
(a−b)

will have a

distance of 1. Lastly, the new point will have to be translated back by adding
b. Simplifying the final expression will result in the general formula above. If A
and B were on the unit circle, you can reach the second formula by also using
the fact that bb̄ = 1 and that a−b

ā−b̄ = −ab.

Since the projection of a point onto a line is the midpoint of the point and
its reflection, these formulas can be used with a simple modification to get the
projection. For instance in the second case:

z′ =
a+ b− abz + z

2

Theorem 5.1. The reflection of a point Z through the line AB is described by

z′ = (a−b)z+ab−ab
a−b

If you wish to rotate a point a certain amount of radians around another
point, using cartesian coordinates will be very difficult, but with complex num-
bers this is very easy. Suppose you wish to rotate a point A ϕ radians counter-
clockwise around another point B. To do this you create the complex number
representing the vector from B to A, which is a− b. Then this vector is rotated
by multiplying it with eiϕ. The following number is your rotated vector starting
at the origin. In order to have your rotated vector start from B, you simply add
b to the vector.

c = (a− b)eiϕ + b

More frequently written as

c− b = (a− b)eiϕ

If ϕ is negative, it will instead rotate clockwise.

Theorem 5.2. The rotation of A around B ϕ radians onto C have the relation
c− b = (a− b)eiϕ

6 Lines

A line in the complex plane that goes through two known points z1 and z2 can
be described as z = z1t+ z2(1− t). This is the parametric form with parameter
t that can take all real values. Any point p on this line can be described in
terms of z1, z2 and two real numbers r1 and r2 that describe the ratio of the

distance from p to z1 and p to z2 with |r1||r2| = |p−z1|
|p−z2| . The value of this point p

is p = r1z2+r2z1
r1+r2

. If p is on the segment z1z2 then r1 and r2 are both positive,

otherwise one is negative. For example, p = z1+z2
2 describes the midpoint of

segment z1z2 and p = −z1+2z2
1 describes a point outside of segment z1z2, twice

as far from z1 as from z2.
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Something that should be avoided when using complex numbers is attempts
at calculating the intersection between two lines. There are methods for calcu-
lating this but they are very impractical and should be avoided in favor of other
methods not involving complex numbers.

7 Practice problems

Problem 7.1. Prove that the midpoints of the altitudes of the traingle are
collinear if and only if the triangle is rectangular.

Problem 7.2. Let H1 and H2 be feet of perpendiculars from the orthocenter
H of the triangle ABC to the bisectors of external and internal angles at the
vertex C. Prove that the line H1H2 contains the midpoint of the side AB.

Problem 7.3. (IMO 1998 shortlist) Let ABC be a triangle such that ∠ACB
= 2∠ABC. Let D be the point of the segment BC such that CD = 2BD. The
segment AD is extended over the point D to the point E for which AD = DE.
Prove that: ∠ECB + 180◦ = 2∠EBC.

8 Conclusion

We hope that we have given you some insight into the application of complex
numbers in geometric problem solving. If you already knew of the concept
but disregarded it as an unviable method we hope to have freed you from this
misconception.
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