Applications of Complex Numbers in Geometry

Polhemskolan Lund
Erik Bryland, David Engström (Kullagymnasiet),
Loke Gustafsson (Kattegattgymnasiet),
Rebecka Mårtensson (Malmö Borgarskola),
Niklas Sandén, Gustav Sjövall

May 2020

Contents

1 Introduction 2
1.1 Forms 2
2 Angles 2
3 Circles 4
4 Triangles 7
5 Transformations 11
6 Lines 12
7 Practice problems 13
8 Conclusion 13

1 Introduction

To succeed in mathematics you need a wide array of tools to have a chance of finding one for the problems you encounter. Here we discuss one tool often overlooked in competitive mathematics, the usage of complex numbers to solve geometry problems. Infamous for creating long and unintuitive solutions, complex solutions are often avoided in favour of synthetic solutions but given the right circumstances a complex solution might actually be the best option. Theoretically, all geometry problems can be solved using complex numbers. However, the practicality differs immensely. Sometimes it will just be too messy.

1.1 Forms

Complex numbers can be written using different forms.
Rectangular form Written on the form $z=a+b i$
Polar form Written on the form $z=r(\cos \theta+i \sin \theta)$
Exponential form Written on the form $z=r e^{i \theta}$
r is the distance to the point from the origin. θ is the angle the complex number (as a vector) makes with the real axis. Positive angles go counterclockwise and negative angles clockwise. The angle, when speaking of complex numbers, is called the argument.

2 Angles

A frequent application for complex numbers is determining the angle between two lines. The easiest example of this is if you have two complex numbers and you represent both using two vectors. In order to calculate the angle between these two vectors you take the quotient of the numbers. When multiplying two complex numbers you add their arguments. Similarly, when you divide, you subtract the arguments and this difference will be the angle between the lines.

$$
\begin{gathered}
z_{1} z_{2}=r_{1} e^{i \theta_{1}} r_{2} e^{i \theta_{2}}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)} \\
\frac{z_{1}}{z_{2}}=\frac{r_{1} e^{i \theta_{1}}}{r_{2} e^{i \theta_{2}}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}
\end{gathered}
$$

Most of the time you will not have a single number which is representative of a line, but rather two numbers which lay on the line, say a and b. The direction of the line will be the equivalent of a vector going from a to b. This vector can be written as $b-a$.

If you have two lines and want to find the angle between them, you may take the quotient. However, if you do not have any actual numbers, then you cannot interpret your answer. This is solved by using a property of conjugate
numbers. If your quotient is real, then your answer will be its own conjugate. Take two lines and let a and b lie on line 1 and c and d on line 2. If the two lines are parallel then the following relationship will be true

$$
\begin{aligned}
& \frac{a-b}{c-d}=\overline{\left(\frac{a-b}{c-d}\right)} \\
& \frac{a-b}{c-d}=\frac{\bar{a}-\bar{b}}{\bar{c}-\bar{d}} \\
& \frac{a-b}{\bar{a}-\bar{b}}=\frac{c-d}{\bar{c}-\bar{d}}
\end{aligned}
$$

If two lines are perpendicular to each other then it means that their quotient would be a purely imaginary number. The complex conjugate of an imaginary number is the original number with an inverted sign. Using the same lines as in the previous example, the relationship for perpendicular lines is

$$
\begin{aligned}
& \frac{a-b}{c-d}=-\overline{\left(\frac{a-b}{c-d}\right)} \\
& \frac{a-b}{c-d}=-\frac{\bar{a}-\bar{b}}{\bar{c}-\bar{d}} \\
& \frac{a-b}{\bar{a}-\bar{b}}=-\frac{c-d}{\bar{c}-\bar{d}}
\end{aligned}
$$

There is another useful relation which can be derived from the relationship regarding parallel lines and collinearity. Take three points a, b and c. If a vector going from a to b is parallel to a vector going from a to c then they are collinear. This will result in the relation

$$
\frac{a-b}{\bar{a}-\bar{b}}=\frac{a-c}{\bar{a}-\bar{c}}
$$

Theorem 2.1. Two lines $A B$ and $C D$, with corresponding complex numbers, a, b, c and d are:
(i) Parallel if and only if $\frac{a-b}{\bar{a}-\bar{b}}=\frac{c-d}{\bar{c}-\bar{d}}$
(ii) Perpendicular if and only if $\frac{a-b}{\bar{a}-\bar{b}}=-\frac{c-d}{\bar{c}-\bar{d}}$

Theorem 2.2. A, B and C are collinear if and only if $\frac{a-b}{\bar{a}-\bar{b}}=\frac{a-c}{\bar{a}-\bar{c}}$

3 Circles

Circles often pose a problem for solutions involving complex numbers as most ways of expressing them quickly become unwieldy in more difficult problems. There is however one exception. At the heart of almost every complex solution lies the unit circle. By identifying a prominent circle in the problem statement and letting that circle be the unit circle the solution can be massively simplified using the following properties.

Theorem 3.1. Given two points a and b on the unit circle it holds that
(i) $\bar{a}=\frac{1}{a}$
(ii) $\frac{a-b}{\bar{a}-\bar{b}}=-a b$
(iii) The tangents to the unit circle at a and b intersect $a t \frac{2 a b}{a+b}$

Figure 1: Illustration to Theorem 3.1 (iii). The tangents of two points a and b on the unit circle meet at a point p, where $p=\frac{2 a b}{a+b}$

Proof. (i) follows directly from the fact that $\bar{a} a=|a|^{2} \quad(|a|=1$ since a lies on the unit circle).
Using (i), (ii) can now be proven as

$$
\frac{a-b}{\bar{a}-\bar{b}}=\frac{a-b}{\frac{1}{a}-\frac{1}{b}}=\frac{(a-b) a b}{b-a}=-a b
$$

(iii) is a little harder to prove. $A O$ and $P A$ are perpendicular which means that they can be expressed as

$$
\begin{aligned}
\frac{P-a}{\bar{P}-\bar{a}} & =-\frac{a}{\bar{a}} \\
P-a & =-a^{2}\left(\bar{P}-\frac{1}{a}\right) \\
-\frac{P}{a^{2}}+\frac{2}{a} & =\bar{P}
\end{aligned}
$$

Due to the symmetry of the problem this expression also applies to $B O$ and $P B$. Then we get the equation

$$
\begin{aligned}
-\frac{P}{a^{2}}+\frac{2}{a} & =-\frac{P}{b^{2}}+\frac{2}{b} \\
\frac{P}{b^{2}}-\frac{P}{a^{2}} & =\frac{2}{b}-\frac{2}{a} \\
P & =\frac{\frac{2}{b}-\frac{2}{a}}{\frac{1}{b^{2}}-\frac{1}{a^{2}}} \\
P & =\frac{(2 a-2 b) a b}{a^{2}-b^{2}} \\
P & =\frac{2 a b}{a+b}
\end{aligned}
$$

Problem 3.1. Given a circumscribed quadrilateral $A B C D$, let M and N be the midpoints of the diagonals $A C$ and $B D$. If O is the incenter, prove that M, N, and O are collinear.

Proof. Let the inscribed circle of $A B C D$ be the unit circle. According to Theorem 2.1 (iii) it is sufficient to prove that

$$
\frac{m-o}{\bar{m}-\bar{o}}=\frac{n-o}{\bar{n}-\bar{o}}
$$

Figure 2: The inscribed angle theorem tells us that $\angle A O C=2 \angle A C B$. It can be proven using complex numbers, see proof to Theorem 3.2.
since O is the origin we need to prove that $\frac{m}{\bar{m}}=\frac{n}{n}$. Let p, q, r, s be the points of tangency of the incircle with the sides $a b, b c, c d, d a$ respectively. Using Theorem 3.1 (iii) we have

$$
m=\frac{a+c}{2}=\frac{p s}{p+s}+\frac{q r}{q+r}=\frac{p q s+p r s+p q r+q r s}{(p+s)(q+r)}
$$

the conjugate of m will then be $\bar{m}=\frac{p+q+r+s}{(p+s)(q+r)}$. Dividing m by \bar{m} now gives us

$$
\frac{m}{\bar{m}}=\frac{p q s+p r s+p q r+q r s}{p+q+r+s}
$$

Notice that this expression is symmetric in p, q, r and s. Similarly, we will therefore get the same result for $\frac{n}{n}$. This gives us that $\frac{m}{\bar{m}}=\frac{n}{n}$.

These properties, unique to the unit circle, makes many problems trivial that would otherwise be infeasable. Complex solutions are therefore best reserved for problems containing no more than one predominant circle. As long as that is true they can produce short and simple proofs. Consider for example a complex proof of the inscribed angle theorem.

Theorem 3.2 (Inscribed Angle Theorem). Given three points A, B and C on a circle with midpoint $O \angle A O B=2 \angle A C B$.

Proof. WLOG we assume the circle to be the unit circle and represent the points A, B and C as complex numbers a, b and c respectively. Since a, b and c lie
on the unit circle O will be 0 . As mentioned earlier, the angle between two lines can be determined by a quotient. We want the angles $\angle A O B$ and $\angle A C B$. However, they are going to be differing by a factor of 2 . In order to double the angle of a complex number you square it

$$
z^{2}=\left(r e^{i \theta}\right)=r^{2} e^{i 2 \theta}
$$

The problem now is that the magnitudes are squared as well. This is solved by ensuring that the length of all differences are 1. The length from the center of the unit circle to a and b is simply 1 by definition. To get the vector from a to c to have the length 1 , you need to divide the vector by its own length. With all of this in mind one gets the expression

$$
\begin{array}{r}
\left(\frac{\frac{c-a}{|c-a|}}{\frac{c-b}{|c-b|}}\right)^{2} \\
\left(\frac{|c-b|}{|c-a|} \cdot \frac{c-a}{c-b}\right)^{2} \\
\frac{|c-b|^{2}}{|c-a|^{2}} \cdot \frac{(c-a)^{2}}{(c-b)^{2}} \\
\frac{(c-b)(\bar{c}-\bar{b})}{(c-a)(\bar{c}-\bar{a})} \cdot \frac{(c-a)^{2}}{(c-b)^{2}} \\
\frac{c-a}{\bar{c}-\bar{a}} \cdot \frac{\bar{c}-\bar{b}}{c-b} \\
-c a \cdot \frac{1}{-c b} \\
\frac{1}{b}
\end{array}
$$

$\frac{a}{b}$ is the angle between the A, O and B which we have now shown to be twice that of angle between A, C and B.

4 Triangles

Equipped to deal with angles and circles the only thing that remains is triangles. Solving geometry problems without a way of expressing triangle centers would be a daunting task. Luckily they can often be expressed using simple expressions.

Perhaps the simplest triangle center to express using complex numbers is the centroid, the point within the triangle where the three medians meet. For a given triangle $A B C$ the centroid can be expressed as $\frac{a+b+c}{3}$.

Expressing the incenter and circumcenter (the center of the inscribed circle and circumscribed circle respectively) in the general case is not as simple. This can however easily be solved by letting the incircle or circumcircle be the unit circle. In the former case it is then often beneficial to express every point in terms of the tangent points instead of the triangle corners. By doing this the incenter or circumcenter simply becomes 0 .

Lastly, the orthocenter (the point where the altitudes of a triangle meet) also benefits from having its triangle corners lie on the unit circle. As long as this is the case the orthocenter of a triangle $A B C$ can also be expressed in a simple expression as $a+b+c$.

Proof. Let $h=a+b+c$. Using the perpendicular theorem, we get that $A H$ and $B C$ are perpendicular, if and only

$$
\begin{array}{r}
\frac{h-a}{b-c}=-\overline{\left(\frac{h-a}{b-c}\right)} \\
\frac{b+c}{b-c}=-\frac{\bar{b}+\bar{c}}{\bar{b}-\bar{c}}
\end{array}
$$

since b and c are on the unit circle, we can plug in $\bar{b}=\frac{1}{b}$ and similarily $\bar{c}=\frac{1}{c}$. From that we obtain:

$$
\frac{b+c}{b-c}=-\frac{\frac{1}{b}+\frac{1}{c}}{\frac{1}{b}-\frac{1}{c}}=-\frac{b+c}{c-b}=\frac{b+c}{b-c}
$$

We have proven that $A H$ and $B C$ are perpendicular. By similar reasoning, $B H$ and $A C$ are perpendicular, as well as $C H$ and $A B$. Thus h is the orthocenter of the triangle

Using this, problems featuring triangles and triangle centers can swiftly be dealt with. As an example consider the following problem.

Problem 4.1. Let S be the circumcenter and H the orthocenter of $\triangle A B C$. Let Q be the point such that S bisects $H Q$ and denote by T_{1}, T_{2}, and T_{3}, respectively, the centroids of $\triangle B C Q, \triangle C A Q$ and $\triangle A B Q$. Prove that $A T_{1}=$ $B T_{2}=C T_{3}=\frac{4}{3} R$, where R denotes the circumradius of $\triangle A B C$.

Figure 3: Illustration to problem 4.1. S is the circumcenter of $\triangle A B C$ and also the origin the complex plane. The circumscribed circle of $\triangle A B C$ is the unit circle. H is the orthocenter of $\triangle A B C$ and Q is the reflection of H through S. T_{1}, T_{2} and T_{3} are the centroids of $\triangle B C Q, \triangle C A Q$ and $\triangle A B Q$ respectively.

Proof. Let the circumcenter of $\triangle A B C$ be the unit circle in the complex plane and a, b and c be complex number representing A, B and C respectively. The orthocenter h can be expressed as $a+b+c$ (theorem). Since s bisects $H Q, q$ is the reflection of h over s, the origin. Thus, $q=-h=-a-b-c$. The centroid of $B C Q$ is $\frac{(q+b+c)}{3}$ which simplifies to $\frac{-a}{3}$. We want to find the distance between a and $\frac{-a}{3}$, i.e., $\left|a-\left(\frac{-a}{3}\right)\right|=\left|\frac{4}{3} a\right|=\frac{4}{3}$. By symmetry this distance is the same as $B T_{2}$ and $C T_{3}$.

Problem 4.2. (IMO 2008) An acute-angled triangle $A B C$ has orthocenter H. The circle passing through H with center the midpoint of $B C$ intersects the line $B C$ at A_{1} and A_{2}. Similarly, the circle passing through H with center the midpoint of $C A$ intersects the line $C A$ at B_{1} and B_{2}, and the circle passing through H with center the midpoint of $A B$ intersects the line $A B$ at C_{1} and C_{2}. Show that $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$ lie on a circle.

Figure 4: Illustration to problem 4.2. We have also defined M_{A}, M_{B} and M_{C} as the midpoints and O as the circumcenter. We have also drawn the circumscribed circle of the triangle.

Proof. We immediately recognize that if the points were to lie on a circle, its center would have to be the circumcenter, O, because it would lie on the perpendicular bisectors of the sides. Let the circumscribed circle of $\triangle A B C$ be the unit circle. As usual, we will denote the points' complex counterpart as lowercase. Since $\angle O M_{B} B_{2}$ is a right angle, we can use the Pythagorean Theorem to get the distance to B_{2} from the distance to M_{B} and the distance from M_{B} to B_{2}. Since $m_{b}=\frac{a+c}{2}$ and the distance from M_{B} to B_{2} is the same as the distance from M_{B} to H, and that $h=a+b+c$ we can conclude that:
$\left|b_{2}\right|^{2}=\left|m_{b}\right|^{2}+\left|b_{2}-m_{b}\right|^{2}=\left|\frac{a+c}{2}\right|^{2}+\left|a+b+c-\frac{a+c}{2}\right|^{2}=\left|\frac{a+c}{2}\right|^{2}+\left|b+\frac{a+c}{2}\right|^{2}$
Next we use the fact that the distance to a complex number squared is equal to the complex number times its conjugate. Since a, b and c are on the unit circle, their conjugate will be $\frac{1}{a}, \frac{1}{b}$ and $\frac{1}{c}$ respectively.

$$
\begin{aligned}
& \left|\frac{a+c}{2}\right|^{2}+\left|b+\frac{a+c}{2}\right|^{2}=\frac{(a+c) \overline{(a+c)}}{4}+\left(b+\frac{a+c}{2}\right) \overline{\left(b+\frac{a+c}{2}\right)} \\
& =\frac{(a+c)\left(\frac{1}{a}+\frac{1}{c}\right)}{4}+\left(b+\frac{a}{2}+\frac{c}{2}\right)\left(\frac{1}{b}+\frac{1}{2 a}+\frac{1}{2 c}\right) \\
& =\frac{1}{4}+\frac{a}{4 c}+\frac{c}{4 a}+\frac{1}{4}+1+\frac{b}{2 a}+\frac{b}{2 c}+\frac{a}{2 b}+\frac{1}{4}+\frac{a}{4 c}+\frac{c}{2 b}+\frac{c}{4 a}+\frac{1}{4}
\end{aligned}
$$

$$
=2+\frac{a}{2 b}+\frac{a}{2 c}+\frac{b}{2 a}+\frac{b}{2 c}+\frac{c}{2 a}+\frac{c}{2 b}
$$

As previously mentioned this is the distance to b_{2}. There is no need to check the distance to b_{1} since we already know it will be the same since the circle's center will be the circumcenter. What's left is doing the last few steps for one of a_{1} and a_{2}, and one of c_{1} and c_{2} to see that you end up with the same distance, which proves that they lie on a circle. The steps are identical and result is the same answer and is therefore left as an exercise for the reader. However, one can argue that it is not necessary since the only difference in the other two cases will be that either b and c swap places or a and b. Because of the symmetrical nature of the result, it is clear that it would be the same regardless.

5 Transformations

In geometry it is important to be able to manipulate figures and points freely. When using complex numbers this becomes easy thanks to a few relations. Translation is easy, it is the same as with cartesian coordinates. You simply add or subtract the number that represents the desired translation. Reflections and rotations are not that difficult either.

The reflection of point z through the origin is, like with cartesian coordinates, $-z$. This is frequently used when a point lies on the unit circle. The reflection of point z_{1} through point z_{2} will therefore result in $2 z_{2}-z_{1}$. Intuitively, it could be seen as taking the vector difference $z_{2}-z_{1}$ and adding z_{2}. Alternatively, it could be seen as translating the coordinate system so that z_{2} gets translated onto 0 , reflecting z_{1} through 0 , and translating back. Reflection of a point Z over line $A B$ can be written as:

$$
z^{\prime}=\frac{(a-b) \bar{z}+\bar{a} b-a \bar{b}}{\bar{a}-\bar{b}}
$$

If A and B both lie on the unit circle, it simplifies to:

$$
z^{\prime}=a+b-a b \bar{z}
$$

These can be proven by first translating all of the points by taking $-b$ so that b gets translated onto the origin. Since the new line will go through the origin you can simply rotate $z-b$ around the origin by the argument difference of $z-b$ and $a-b$ twice to get the reflection of $z-b$ over the new line. One way to express this new point is:

$$
\frac{(a-b) \overline{(z-b)}}{\overline{(a-b)}}
$$

The argument of the new point would be $2 * \arg (a-b)-\arg (z-b)$ which is equal to $2 *(\arg (a-b)-\arg (z-b))+\arg (z-b)$ as described previously. It
will also have the same distance to the origin as $z-b$ since $\xlongequal[(a-b)]{(a-b)}$ will have a distance of 1 . Lastly, the new point will have to be translated back by adding b. Simplifying the final expression will result in the general formula above. If A and B were on the unit circle, you can reach the second formula by also using the fact that $b \bar{b}=1$ and that $\frac{a-b}{\bar{a}-b}=-a b$.

Since the projection of a point onto a line is the midpoint of the point and its reflection, these formulas can be used with a simple modification to get the projection. For instance in the second case:

$$
z^{\prime}=\frac{a+b-a b \bar{z}+z}{2}
$$

Theorem 5.1. The reflection of a point Z through the line $A B$ is described by $z^{\prime}=\frac{(a-b) \bar{z}+\bar{a} b-a \bar{b}}{\bar{a}-\bar{b}}$

If you wish to rotate a point a certain amount of radians around another point, using cartesian coordinates will be very difficult, but with complex numbers this is very easy. Suppose you wish to rotate a point $A \varphi$ radians counterclockwise around another point B. To do this you create the complex number representing the vector from B to A, which is $a-b$. Then this vector is rotated by multiplying it with $e^{i \varphi}$. The following number is your rotated vector starting at the origin. In order to have your rotated vector start from B, you simply add b to the vector.

$$
c=(a-b) e^{i \varphi}+b
$$

More frequently written as

$$
c-b=(a-b) e^{i \varphi}
$$

If φ is negative, it will instead rotate clockwise.
Theorem 5.2. The rotation of A around $B \varphi$ radians onto C have the relation $c-b=(a-b) e^{i \varphi}$

6 Lines

A line in the complex plane that goes through two known points z_{1} and z_{2} can be described as $z=z_{1} t+z_{2}(1-t)$. This is the parametric form with parameter t that can take all real values. Any point p on this line can be described in terms of z_{1}, z_{2} and two real numbers r_{1} and r_{2} that describe the ratio of the distance from p to z_{1} and p to z_{2} with $\frac{\left|r_{1}\right|}{\left|r_{2}\right|}=\frac{\left|p-z_{1}\right|}{\left|p-z_{2}\right|}$. The value of this point p is $p=\frac{r_{1} z_{2}+r_{2} z_{1}}{r_{1}+r_{2}}$. If p is on the segment $z_{1} z_{2}$ then r_{1} and r_{2} are both positive, otherwise one is negative. For example, $p=\frac{z_{1}+z_{2}}{2}$ describes the midpoint of segment $z_{1} z_{2}$ and $p=\frac{-z_{1}+2 z_{2}}{1}$ describes a point outside of segment $z_{1} z_{2}$, twice as far from z_{1} as from z_{2}.

Something that should be avoided when using complex numbers is attempts at calculating the intersection between two lines. There are methods for calculating this but they are very impractical and should be avoided in favor of other methods not involving complex numbers.

7 Practice problems

Problem 7.1. Prove that the midpoints of the altitudes of the traingle are collinear if and only if the triangle is rectangular.

Problem 7.2. Let H_{1} and H_{2} be feet of perpendiculars from the orthocenter H of the triangle $A B C$ to the bisectors of external and internal angles at the vertex C. Prove that the line $H_{1} H_{2}$ contains the midpoint of the side $A B$.

Problem 7.3. (IMO 1998 shortlist) Let $A B C$ be a triangle such that $\angle A C B$ $=2 \angle A B C$. Let D be the point of the segment $B C$ such that $C D=2 B D$. The segment $A D$ is extended over the point D to the point E for which $A D=D E$. Prove that: $\angle E C B+180^{\circ}=2 \angle E B C$.

8 Conclusion

We hope that we have given you some insight into the application of complex numbers in geometric problem solving. If you already knew of the concept but disregarded it as an unviable method we hope to have freed you from this misconception.

