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1 Introduction

Diophantine equations are algebraic equations where we only seek the integer
solutions. We might wish for a purely algebraic approach for solving these equa-
tions in general. That however is usually hard, for most Diophantine equations
will require the use of number theory to be solved. Some tricks will be shown
here, but as always the best teacher is you. Make sure to practice solving lots
of problems.

Linear Diophantine equations will not be presented here, although they are
the most fundamental type of Diophantine equations and are helpful in under-
standing modular arithmetic. The reader might be interested in reading the
article about linear Diophantine equations on Brilliant Math & Science Wiki.1

2 Finding a Factorization

The word factorization denotes the writing of an expression as a product of two
other expressions (two factors of the original expression, hence the name). For
example, 6 can be factored as 2 · 3, and x2 + x as x(x + 1). The Fundamental
Theorem of Arithmetic states that every integer greater than 1 is either a prime
or can be factored as a product of prime numbers in a unique way. As a
result of the theorem, knowing the factorization of an expression provides a
way of solving Diophantine equations. In a Diophantine equation, if we have
a factored expression on one side and an integer on the other side, we can due
to the Fundamental Theorem of Arithmetic determine all possible values of the
factors by looking at the prime factorization of the integer. We will demonstrate
how it works in later examples.

We will start by refreshing the reader’s memory and giving some new useful
identities to know. We encourage you to ascertain their validity by trying them
out by yourself.

x2 ± 2xy + y2 = (x± y)2 (1)

x2 − y2 = (x + y)(x− y) (2)

x3 ± y3 = (x± y)(x2 ∓ xy + y2) (3)

x3 + y3 + z3 − 3xyz = (x + y + z)(x2 + y2 + z2 − xy − yz − xz) (4)

Knowing these formulas can prove a useful skill, as they are very common
and their simplicity makes them easy to handle.

Example 2.1. For what integers a and b does the equality a2− 4ab = −4b2 + 9
hold?

1Linear Diophantine Equations (n.d.). On Brilliant Math & Science Wiki. Accessible at:
https://brilliant.org/wiki/linear-diophantine-equations-one-equation/
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Solution. From identity (1), we can see that (x− y)2 = x2− 2xy + y2. Also, we
know that a2− 4ab = −4b2 + 9 is equivalent to a2− 2a(2b) + (2b)2 = 9, and can
therefore conclude that (a − 2b)2 = 9. The number 9 can be factored as 9 · 1,
3 · 3, (−9) · (−1) and (−3) · (−3). Because the left side of the equation is the
product of two identical integers (a − 2b), we can conclude that a − 2b = ±3,
giving us a = ±3 + 2b.

It is also worth noting that if a product of two factors is equal to the n:th
power of an integer, and the factors have no common divisor greater than 1,
the factors are also n:th powers of some integers. That is to say, if x and y are
co-prime integers and xy = zn where z and n are integers with n ≥ 0, then
x = an and y = bn for some integers a and b.

This can be verified by looking at the individual prime divisors of z, which
occur in multiples of n. Since they cannot be split up between two co-prime
factors, the prime power is either a factor in x or in y. As a result, both x and
y will consist of prime factors with powers being multiples of n, which means
that x and y in turn are n:th powers.

Remark. Two integers are said to be relatively prime (or co-prime) if their
greatest common divisor is 1. The numbers (a, b, c) are pairwise relatively prime
if (a, b), (b, c) and (c, a) are all pairs of relatively prime integers.

Example 2.2. (Baltic Way 1995) The positive integers a, b, c are pairwise
relatively prime, a and c are odd and the numbers satisfy the equation a2 + b2 =
c2. Prove that b + c is a square of an integer.

Solution. We can rewrite the equation in a more convenient form as a2 = c2−b2.
Factoring the right hand side using identity (2) yields a2 = (c + b)(c − b). As
previously explained, it is sufficient to prove that b + c and c− b are relatively
prime for b + c and c− b to be squares. Let us assume the opposite, that b + c
and c−b share a divisor d > 1. Let b+c = dx and c−b = dy, where x and y are
integers. Adding the equations together gives 2c = d(x + y), and subtracting
them yields 2b = d(x− y). This means that either d divides both b and c, or 2
divides d. We can exclude the first case since b and c are relatively prime. If d
were even, b and c would have had the same parity, which would in turn imply
that a is even, which would be a contradiction. This means that we can exclude
the second case as well. Hence c+b and c−b must be relatively prime, meaning
that b+ c is the square of an integer (which is also true for c− b), which was to
be proven.

While an expression might remind you of a certain factorization, it might
not always be possible to directly factorize it. In that case, it is often useful to
add a term to make the factorization possible. A common strategy is to add an
integer to both sides of a Diophantine equation, ending up with a factorizable
expression on one side and an expression from which you can determine the
factors on the other side.

Example 2.3 (Pythagoras Enigma 2019). Find all integer solutions to the
equation x3 + y3 − 3xy = 3.
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Solution. Trying to immediately factor the expression in the left hand side will
not lead to much progress. Nevertheless, the expression closely resembles the left
hand side of identity (4), where z is replaced by 1. Comparing the expressions
x3 + y3 − 3xy and x3 + y3 + z3 − 3xyz where z = 1, we see that they only
differ by the number 1. Therefore, we can add 1 to both sides of the equation
x3 + y3 − 3xy = 3 to make the left hand side factorizable. Consequently, using
identity (4), the obtained equation x3 + y3 + 1− 3xy = 4 can be rewritten as

(x + y + 1)(x2 + y2 + 1− xy − x− y) = 4. (5)

There are six possible ways to split up the number 4 between the two factors,
namely (x+y+1, x2+y2+1−xy−x−y) = (1, 4), (4, 1), (2, 2), (−1,−4), (−4,−1)
or (−2,−2). For the first factor of the left hand side in equation (5) to be even,
x and y must have different parity, making the second factor odd. Hence, we
can exclude the alternatives (2, 2) and (−2,−2). The other alternatives, i.e.
(x + y + 1, x2 + y2 + 1− xy − x− y) = (1, 4), (4, 1), (−1,−4) or (−4,−1), lead
to the systems of equations{

x + y = 0

xy = −1
,

{
x + y = 3

xy = 2
,

{
x + y = −2

3xy = 11
, and

{
x + y = −5

3xy = 32
,

respectively, which follows from rewriting the second factor as (x + y)2 + 1 −
3xy− (x+ y). The two latter can be excluded, since 11 and 32 are not divisible
by 3. The two first equations give, by substituting the upper equation into the
lower, the solutions (x, y) = (1,−1), (−1, 1), (1, 2) and (2, 1). These are hence
the integer solutions to the equation.

2.1 Exercises for the reader

Exercise 2.1 (Baltic Way 2003). Let a and b be positive integers. Prove that if
a3 + b3 is the square of an integer, then a + b is not a product of two different
prime numbers.

Exercise 2.2 (Baltic Way 1997). A rectangle can be divided into n equal squares.
The same rectangle can also be divided into n + 76 equal squares. Find all
possible values of n.

Exercise 2.3 (Skolornas matematiktävling 2009). Find all solutions in positive
integers to the equation 1

x + 1
y = 1

101 .

3 Congruences

While often not containing many complicated terms or expressions, even quite
normal-looking Diophantine equations can hide enormous amounts of complex-
ity. Being able to reduce the mental complexity of some equation should there-
fore be very helpful, and as it turns out, using what is called modular arithmetic
and congruences is one of the most powerful and fundamental tools at our dis-
posal. The basic definition in this section is therefore the one of congruence.
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Definition 3.1. Two integers a, b, are said to be congruent ”modulo” another
integer n if n|a− b, and we denote this by a ≡ b mod n.

Remark. If (all mod some fixed positive integer n) a ≡ a′, and b ≡ b′ then
a + b ≡ a′ + b′ and ab ≡ a′b′. For example, since 02 ≡ 0, 12 ≡ 1, 22 ≡ 4 ≡ 0,
and 32 ≡ 9 ≡ 1 mod 4, this implies that integer squares can only be congruent
to 0 or 1 mod 4.

For instance, the 24-hour clock is an example of a system of integers mod
24. Another system you have used before is the fact that two odd numbers or
two even numbers sum to an even number, and only the sum of one even and
one odd number sum to an odd number; these are in fact statements about the
integers mod 2.

We introduce below, an important and useful theorem in number theory and
the study of Diophantine equations.

Theorem 3.1 (Fermat’s little theorem). Let p be a prime number, then for any
integer a, we have

ap ≡ a mod p

Moreover, if a is not divisible by p, we can get

ap−1 ≡ 1 mod p

Example 3.1 (Baltic Way 2012). Find all integer solutions a, b, c of

a2 + b2 + c2 = 20122012.

Solution. Let us first factorize the RHS. We immediately see that

20122012 = 10001 · 2012 = 10001 · 4 · 503,

and we consider the equation mod 8. As 10001 = 8 · 1250 + 1 and 503 =
480 + 23 = 8 · 62 + 7, we have that

20122012 ≡ 4 · 7 ≡ 4 mod 8.

Let us explore what n2 can be congruent to mod 8. As we can see from the

n mod 8 0 1 2 3 4 5 6 7

n2 mod 8 0 1 4 1 0 1 4 1

table, since our sum of integer squares is congruent to 4 mod 8, the only possi-
ble combinations of congruences for (a2, b2, c2) are (0, 0, 4) and (4, 4, 4) (in any
permutation). Thus the integers a, b, c, can only be even. Now let a = 2 · a′,
b = 2 · b′, c = 2 · c′ and we get

4(a′
2

+ b′
2

+ c′
2
) = 20122012 = 4 · 503 · 10001,
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which in turn gives

a′
2

+ b′
2

+ c′
2

= 503 · 10001.

Now we combine the fact that 503 ·10001 ≡ 7 mod 8 and look at our table once
again, noting that no sum of three squares is congruent to 7 mod 8, and so no
solutions to our original equation can exist.

Example 3.2 (Andreescu et al.2, 2010, p.224, modified). Prove that the equa-
tion 8xy − x− y = 2z4 has no solution in positive integers.

Solution. Assume there exists a positive integer solution. Multiplying by 8 and
adding 1 gives us the equation (8x−1)(8y−1) = 16z4 +1. Suppose p is a prime
divisor of 8x− 1. Then p is also a divisor of 16z4 + 1, thus

16z4 = (4z2)2 ≡ −1 mod p.

Since p is not a divisor of z, Fermat’s Little Theorem shows that (4z2)p−1 ≡ 1
mod p. We also know that p is odd, so

((4z2)2)
p−1
2 ≡ (−1)

p−1
2 ≡ 1 mod p

and p−1
2 must be even. As a result, p ≡ 1 mod 4. Looking at the prime

factorization of 8x − 1, we can see that all factors are congruent to 1 mod 4,
meaning that their product (i.e. 8x− 1) is also congruent to 1 mod 4.

However, 8x − 1 ≡ −1 mod 4, which leads to a contradiction. This means
that there are no solutions in positive integers to the equation.

3.1 Exercises for the reader

Exercise 3.1 (Baltic Way 2016). For which integers n=1, 2 . . . 6 does the equa-
tion

an + bn = cn + n,

have a solution in integers?

Exercise 3.2 (USAMO 1979). Determine all non-negative integer solutions, apart
from permutations, of the equation

n4
1 + n4

2 + n4
3 + . . . + n4

15 = 1599.

Exercise 3.3 (AwesomeMath 2007). Find all non-negative integer solutions (a, b, c)
of

4ab− a− b = c2.

4 Inequalities

Discovering bounds on variables and expressions can be very useful in Diophan-
tine equations since we don not have a continuous span of solutions but rather
single points on the numberline. That means we easily can remove large quan-
tities and get finitely many possibilities that can be tested in cases. We present
three useful techniques for this endeavor.

2Andreescu et al. (2010). Introduction to Diophantine Equations Berlin: Springer
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4.1 Creating extra equations

A common technique is to use the fact that squares of real numbers, and hence
integers, are non-negative. We can with this technique limit the number of
options for some variable and get a finite number of possible values. This works
with |x| or any other function that has a lower bound on its range.

Example 4.1. Find all integral solutions to the following system of equations.{
x + y + z = 60,

(x− 4y)2 + (y − 2z)2 = 2

Solution. The integer squares in the second equation must be both 1 for their
sum to be 2, since both squares are integers greater than or equal to zero. That
gives: {

x = 4y ± 1

y = 2z ± 1
.

We have reduced all infinitely many values to two possibilities for x − 4y and
two for y − 2z, which is four combinations in total. Now, if we express x and z
in terms of y, we get when we plug into the first equation:

4y ± 1 + y +
y

2
± 1

2
= 60,

which gives

11y ± 2± 1 = 120.

Here the only way for 120±1±2 to be a multiple of 11 is if 11y = 120+2−1
or y = 11. Using our plus and minus choices we get x = 4 · 11 − 1 = 43 and
11 = 2 · z− 1 which gives z = 6. This solves the original equations, so we arrive
at our answer of

x = 43, y = 11, z = 6.

4.2 Using symmetry

Using symmetry is another useful technique which often allows us to eliminate
one variable at once. We order the variables in the equation to use properties
of the smallest or largest one.

Example 4.2 (Andreescu et al., 2010, p.14). Solve 1
x + 1

y + 1
z = 3

5 in positive
integers.

Solution. Without loss of generality let x ≤ y ≤ z (sometimes we cannot order
the variables and instead we can only choose which of the variables will be the
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smallest or largest one). This gives 3
x ≥

3
5 which gives x ∈ {1, 2, 3, 4, 5}. We

can eliminate x = 1 since it is too large.
If x = 2 we get 1

y + 1
z = 1

10 → y = 10 + 100
z−10 so z − 10|100. Restrict-

ing ourselves to a finite amount of values for y and z, the solutions are easily
found: (2, 11, 110), (2, 12, 60), (2, 14, 35), (2, 15, 30), (2, 20, 20). Remember that
the permutations of these solutions also work. The rest of the cases are left as
an exercise to the reader.

4.3 Minimization

Minimization is a technique taking advantage of the fact that, given some solu-
tions in positive integers to an equation, one of them is the smallest one. Using
this, we can disprove the existence of solutions through a proof by contradiction.
We start by assuming that a solution to an equation exists. If that leads us to
the existence of an infinite strictly decreasing sequence of positive integer solu-
tions, we have arrived at a contradiction. In turn, we can deduce that there are
no positive integer solutions to the equation. Of course, we will need to define
what the smallest solution is for equations involving more than one variable. We
can for instance do this by looking at the sum of the variables. For example: if
(x, y) and (p, q) are solutions, then (x, y) is smaller than (p, q) if x + y < p + q.

Example 4.3 (Andreescu et al., 2010, p.49). Solve x3 + 2y3 = 4z3 in positive
integers.

Solution. Let (a, b, c) be a solution minimized for x+y+z. In other words there
is no solution (p, r, q) such that p + r + q < a + b + c. Because we seek positive
values such a solution must exist. Notice that a3 = 4c3 − 2b3 = 2(2c3 − b3),
or in other words a3 and thus a is even. Letting a = 2k where k is a positive
integer gives

8k3 + 2b3 = 4c3 −→ 4k3 + b3 = 2c3 −→ b3 = 2(c3 − 2k3),

so b is also even. Let b = 2m where m is a positive integer.
From this we get

4m3 = c3 − 2k3 −→ c3 = 4m3 + 2k3 = 2(2m3 + k3),

so c is also even, and letting c = 2n, where n is a positive integer, gives another
solution x = k, y = m, z = n to the initial equation.

This means that our original solution is not minimized for x + y + z since
k +m+n < a+ b+ c, which is a contradiction, and thus no solutions exist.

4.4 Exercises for the reader

Exercise 4.1. Prove that no solutions in integers exist for the equation a
b =
√
p

where p is a prime number.

Exercise 4.2. Finish all the cases in Example 4.2.

Exercise 4.3. Find all integer solutions to the equation
√
a +
√
b =
√

14.
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5 Pythagorean Triples

You have probably encountered the equation x2 +y2 = z2 from the Pythagorean
Theorem, describing the relation between the side lengths x, y, z of a right
angled triangle. If the side lengths are all positive integers, they form a so
called Pythagorean triple. For instance, (x, y, z) = (3, 4, 5) is a Pythagorean
triple, and (5, 12, 13) is another. Note that if we multiply the side lengths of
a Pythagorean triangle with a positive factor k, the triangle still remains right
angled since we have only scaled it. Hence, if (x, y, z) is a Pythagorean triple,
all triples (kx, ky, kz), where k is a positive integer, are also Pythagorean. If
we could find all Pythagorean triples (x, y, z) with x, y, z pairwise co-prime, we
would know all positive integer solutions to the equation x2 + y2 = z2 (indeed,
two of the numbers x, y, z cannot share a common factor which is not a divisor
in the third, a consequence of the condition x2 + y2 = z2). Such triples are
called primitive Pythagorean triples. As we can see in the following theorem,
they are infinitely many.

Theorem 5.1. Every primitive Pythagorean triple (x, y, z) with y even can be
expressed in the form x = m2 − n2, y = 2mn, z = m2 + n2, where m and n are
relatively prime integers of different parity with m > n > 0.

Proof. Firstly, we can easily check that these indeed form a primitive Pythagorean
triple. We have that x2 + y2 = (m2 − n2)2 + 4m2n2 = m4 + 2m2n2 + n4 =
(m2 + n2)2 = z2. Also, any prime divisor of y (except 2) is a divisor of m or n,
and hence not in m2 ± n2 since it would then divide both m and n. A common
prime divisor of x and z would divide both their sum and their difference, i.e.
2m2 and 2n2, and therefore also m and n (if not 2) which is not possible since
m and n are co-prime. Neither do any pair of the numbers x, y, z share the
factor 2, since if m and n have different parity, x and z are both odd. Hence,
x, y, z are pairwise relatively prime. They are also positive integers due to the
fact that m > n > 0.

We must also prove that there are no other primitive Pythagorean triples.
Any primitive Pythagorean triple (x, y, z) satisfies x2 + y2 = z2, where x, y, z
are pairwise relatively prime. If both x and y were odd, we would have had z
even and the right hand side divisible by 4. Since the square of an odd integer
2k + 1 can be written as 4k2 + 4k + 1, which is congruent to 1 modulo 4 (see
Section 3), the sum of two odd squares is therefore congruent to 2 modulo 4 and
the left hand side can therefore not be divisible by 4. We can therefore assume
that y is even, while x and z are odd.

Replacing a, b, c in Example 2.2 by (x, y, z), we can deduce that y + z and
z − y are squares of integers. Write y + z = s2 and z − y = t2, where s and t
are integers. Since y and z have different parity, s and t are odd, which means
s + t and s− t are even. Hence, s + t = 2m and s− t = 2n for integers m and
n. Since x, y and z are positive and x2 + y2 = z2, z must be greater than y
which makes s and t non-zero. Hence, we can assume s and t are positive. Also
s2 − t2 = 2z > 0, so s is greater than t. This means that m and n also are
positive integers. They are of different parity since otherwise m+n is even and
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therefore 2(m+n) divisible by 4, making (s+ t)+(s− t) = 2s divisible by 4 and
s even, a contradiction. They are also relatively prime, since a common divisor
of m and n divides both their sum and their difference, hence s and t, which
are relatively prime. This again leads to a contradiction. Finally, m > n since
2m = s + t > s− t = 2n. Solving for s and t, we get s = m + n and t = m− n,
yielding y + z = (m + n)2 and z − y = (m− n)2. Solving for y and z, y = 2mn

and z = m2 + n2. It follows that x =
√
z2 − y2 = m2 − n2, and the proof is

finished.
These convenient formulas for primitive Pythagorean triples provide a way

for us to handle the condition x2 + y2 = z2 in Diophantine equations.

Example 5.1. Show that the equation a4 + b4 = c2 has no solution in positive
integers.

Solution. We will assume there exist such solutions, and try to arrive at a
contradiction. If a solution (a, b, c) exists, the numbers x = a2, y = b2 and
z = c satisfy the Pythagorean equation x2 + y2 = z2. Common prime factors of
any pair of the numbers (a, b, c) will be factors of the third as well. Noting that
the exponent of the prime factors must be multiples of 4 in both sides of the
equation, we can cancel them out without changing the equation. Hence, we can
assume that a2, b2 and c are co-prime, thus forming a primitive Pythagorean
triple. We can further assume that (a, b, c) is the solution with the smallest
value of c.

We can without loss of generality assume that b2 is even and write a2 =
m2 − n2, b2 = 2mn and c = m2 + n2 with m, n being co-prime integers of
different parity, and m > n > 0. Now, we directly see that (a, n,m) also form a
primitive Pythagorean triple, since m and n are co-prime and can therefore not
share a divisor with a for the Pythagorean equation to hold. This means we can
again use the parametrization of primitive Pythagorean triples and write, since
a is odd, a = s2−t2, n = 2st and m = s2+t2 with s, t being co-prime integers of
different parity and s > t > 0. Now, since n = 2st, we have b2 = 2mn = 4stm.
Since s, t are co-prime, the equation m = s2 + t2 implies that s, t and m are
pairwise relatively prime. This means that s, t and m all must be squares of
positive integers for their product to equal b2/4, which is a square (see Section
1).

We will hence write s = u2, t = v2 and m = w2, where u, v and w are
positive integers, pairwise co-prime. We can therefore rewrite the equation
m = s2 + t2 as u4 + v4 = w2. We have thus obtained another solution to
the initial equation, namely (u, v, w), where u, v and w are pairwise relatively
prime. Since c = m2 +n2 = w4 +n2 is strictly greater than w4, which is in turn
greater than or equal to w, we obtain the inequality w < c, contradicting the
fact that c is minimal. Hence, there are no solutions in positive integers to the
equation a4 + b4 = c2 (See Section 4.3).
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5.1 Exercises for the reader

Exercise 5.1. Find all solutions in positive integers to the system of equations{
a2 + b2 = c2

b2 + c2 = d2
.
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