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1 Introduction

In this paper we will discuss the principle of mathematical induction and its use
for proofs in different mathematical fields. We will explore problems in algebra
such as identities, inequalities, functional equations over N and after that we
will look at some important theorems in number theory and graph theory. In
the end we will investigate a rather interesting field, combinatorial geometry,
which combines the objects from geometry and the ideas from combinatorics.
You will quickly notice that mathematical induction is a powerful technique
which you definitely should add to your tool box.

2 What is mathematical induction?

Let P (n) be a statement involving the variable n such that P (n) is either true
or false. Suppose that

• P (k0) is true.

• If P (k) is true for some integer k ≥ k0, then P (k + 1) is true.

Then P (n) is true for all integers n ≥ k0. To demonstrate what this actually
means, let us suppose that the statement P (0) is true and, if P (k) is true for
some integer k ≥ 0, then P (k + 1) is true. We know that P (0) is true and this
implies that P (1) is true. But if P (1) is true then P (2) must also be true. But
if P (2) is true then P (3) must also be true, and so on. Domino bricks, where
the fall of one brick causes the fall of the next one and so on, is a good and
often used parable for this. As you can see we only have to prove two things
and usually we give these two steps a name. The first step is called the base
case, which is that we need to show P (k0) is true for the integer k0. The next
step is called the inductive step, notice that in this step we are assuming that
P (k) is true for some k ≥ k0 and this is called the induction hypothesis.

With this technique you will get far, but sometimes we need to prove some-
thing stronger or split up the inductive step. The first variation, strong induc-
tion, is similar to the one previously discussed.

Let P (n) be a statement involving the variable n such that P (n) is either
true or false. Suppose that

• P (k0) is true.

• If P (k0), P (k0+1), . . . , P (k) are true for some integer k ≥ k0, then P (k+1)
is true.

Then P (n) is true for all integers n ≥ k0. Try to convince yourself why this is
true.

In the previous two variations there must be a connection between P (k) and
P (k + 1). But what if this is not the case? Perhaps we can find a connection
between P (k) and P (k + 2). How would we proceed then? In this case we must
have two base cases.
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Let P (n) be a statement involving the variable n such that P (n) is either
true or false. Suppose that

• P (k0) and P (k0 + 1) are true.

• If P (k) is true for some integer k ≥ k0, then P (k + 2) is true.

Then P (n) is true for all integers n ≥ k0. Try to convince yourself why this is
true. We can easily generalize this to a connection between P (n) and P (n+ k).
How many base cases do we need now? There are a lot of different variations
we could talk about but this goes beyond the scope of this paper. If you want
to see some other variations we recommend forward-backward induction which
is used to prove the AM-GM inequality. The AM-GM inequality states that for
nonnegative real numbers x1, x2 . . . , xn, the following holds

x1 + x2 + · · ·+ xn

n
≥ n
√
x1 · x2 · · ·xn.

In the case n = 2, we have x1+x2

2 ≥ √x1x2 which is true since it is equivalent to
(
√
x1 −

√
x2)2 ≥ 0. The idea is to prove that the inequality is true for n = 2m,

where m is any positive integer, this acts as the “forward” part. This can be
done by proving that if P (k) is true for some integer k ≥ 2 then P (2k) is true,
with the base case P (2). To prove the inequality for all integers n ≥ 2 we have
to go “backwards”. This can be done by proving that if P (k) is true for some
integer k ≥ 3 then P (k−1) is true. Since n can be arbitrarily large and that we
can go “backwards” the inequality holds for all integers n ≥ 2. Another useful
variation is multidimensional induction when we have a statement that involves
several variables.

3 Algebra

In this section we will explore problems in algebra that can be solved by induc-
tion. Some of the problems that can be solved using this technique are identities,
inequalities and functional equations. We will do that but first let us consider
the following classical identity.

Example 3.1. Show that for all integers n ≥ 1,

1 + 2 + 3 + . . . + (n− 2) + (n− 1) + n =
n(n + 1)

2
.

Proof. If n = 1 we have 1 = 1(1+1)
2 which clearly holds. Let us assume that

the equation in the problem statement holds for the particular value m ∈ Z+

(this is the induction hypothesis). Note here that m is a particular value for the
variable n. Later the letter n will represent both of these concepts at the same
time. That is

1 + 2 + 3 + . . . + (m− 2) + (m− 1) + m =
m(m + 1)

2
.
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By adding m + 1 to both sides and rewriting the right hand side we get

1 + 2 + 3 + . . . + (m− 1) + m + (m + 1) =
m(m + 1)

2
+ (m + 1)

=
m(m + 1)

2
+

2(m + 1)

2

=
(m + 1)(m + 2)

2
,

which means it also holds for the value m+ 1. By the principle of induction the
problem is solved.

Notice that we did not transform one expression into another but instead showed
that two things shared a property of growth. As we increased the variable n by
1 the expressions both grew by n + 1. Since they both started at 1 they must
be equal.

Example 3.2 (Bernoulli’s inequality). Show that for all integers n ≥ 1 and all
real numbers x ≥ −1 the following inequality holds

(1 + x)n ≥ 1 + nx.

Proof. If n = 1, we have 1 + x ≥ 1 + x which is true. Assume that

(1 + x)k ≥ 1 + kx

for some positive integer k. Notice that

(1 + x)k+1 = (1 + x)(1 + x)k

≥ (1 + x)(1 + kx) (Induction hypothesis and 1 + x ≥ 0)

= 1 + (k + 1)x + kx2

≥ 1 + (k + 1)x. (kx2 ≥ 0)

By the principle of mathematical induction we are done.

Example 3.3. Show that for all integers n ≥ 1,

1

12
+

1

22
+

1

32
+ . . . +

1

n2
≤ 2− 1

n
.

Proof. If n = 1 we have 1
12 ≤ 2− 1

1 which clearly holds. Let us assume that the
equation holds for the particular value n ∈ Z+. That is

1

12
+

1

22
+

1

32
+ . . . +

1

n2
≤ 2− 1

n
.

By adding 1
(n+1)2 to both sides of the inequality we get

1

12
+

1

22
+ . . . +

1

n2
+

1

(n + 1)2
≤ 2− 1

n
+

1

(n + 1)2
.
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But since

− 1

n
+

1

(n + 1)2
≤ − 1

n
+

1

n(n + 1)
= − n + 1

n(n + 1)
+

1

n(n + 1)
= − n

n(n + 1)
= − 1

n + 1
,

we have
1

12
+

1

22
+ . . . +

1

n2
+

1

(n + 1)2
≤ 2− 1

n + 1
.

This means that the inequality holds for the value n + 1. By the principle of
induction, the inequality holds for every value of n ∈ Z+.

Another type of algebra problem that effectively uses induction is functional
equations. Consider the following example.

Example 3.4. Find all functions f : N→ N such that

f(n + 1)− f(n) = n + 2,

for all n ∈ N.

Proof. Let k = f(0). We will now show that f(n) = k+ n(n+3)
2 . Clearly it holds

for n = 0. Now assume that it holds for some n. Then we get

f(n + 1)− (k +
n(n + 3)

2
) = n + 2.

By rearranging we get the following

f(n + 1) = k +
n(n + 3)

2
+ n + 2

= k +
n(n + 3) + 2n + 4

2

= k +
n2 + 5n + 4

2

= k +
(n + 1)(n + 4)

2
.

But this means that our formula holds for n+ 1 as well so by induction it must
hold for every nonnegative integer which means that the solutions are precisely

those described by f(n) = k + n(n+3)
2 for all n ∈ N, where k ∈ N. Clearly this

function satisfies the given equation.

You might wonder where we got the expression to begin with. The easiest
way to find it is to plug in small numbers such as 0, 1, 2 and 3 and try to find a
pattern within the values of f(n). You would find that f(0) = k, f(1) = k + 2,
f(2) = k+ 5, f(3) = k+ 9. As you can see, the numbers 0, 2, 5 and 9 here grow
by +2, +3, +4 and so on. This suggests that the formula which describes them
should be a quadratic since the difference between them is linear (one degree
lower). The quadratic can then be found by setting f(n) = an2 + bn + c and
solving for a, b and c.
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3.1 Problems

Problem 3.1. Determine a formula for the sum Sn = 1 ·2+2 ·3+ . . .+n(n+1).

Problem 3.2. Prove that n! > 2n for every integer n ≥ 4.

Problem 3.3. Find all functions f : N→ N such that

nf(n + 1)− (n + 2)f(n) = n + 6,

for all n ∈ N.

4 Number theory

Since both number theory and induction primarily consider the integers, induc-
tion is a valuable tool for solving and proving many of the number theoretic
problems and theorems. This section will look at some of these, starting by
proving two very important theorems - the fundamental theorem of arithmetic
and Fermat’s little theorem.

Example 4.1 (Fundamental theorem of arithmetic). Show that every positive
integer n ≥ 2 can be written as a product of prime numbers.

Proof. We proceed by strong induction. The base case n = 2 is true because 2 is
a prime number. Assume that the statement is true for n = 2, 3, . . . , k for some
integer k ≥ 2. Now we want to show that k + 1 can be prime factorized and we
can do this by noting that k+1 is either a prime number or a composite number.
If k + 1 is a prime number then the statement is true. If k + 1 is a composite
number then we can write k+ 1 = ab, where a, b ∈ Z+. Notice that a, b ≤ k and
we can apply the induction hypothesis and it follows that ab = k + 1 can be
prime factorized. We are done. Since this paper is dedicated to induction proofs
only, we leave proving the uniqueness of the factorization to the reader.

Example 4.2 (Fermat’s little theorem). If p is a prime number, show that
p | ap − a, where a is any integer.

Proof. We start with the induction basis. Since p | 1p − 1 = 0, the theorem is
valid for a = 1. Now assume it applies for some integer a, that is,

p | ap − a

For the induction step we need to prove p | (a + 1)p − (a + 1). The binomial
expansion of (a + 1)p gives,

(a + 1)p − (a + 1) =

p∑
m=0

(
p

m

)
am − (a + 1) = ap + 1 +

p−1∑
m=1

(
p

m

)
am − (a + 1)

or

(a + 1)p − (a + 1) = ap − a +

p−1∑
m=1

(
p

m

)
am

5



Note that p |
(
p
m

)
for 1 ≤ m ≤ p− 1, because p is a prime number. This can be

seen by rewriting as (
p

m

)
=

p!

m! · (p−m)!

For 1 ≤ m ≤ p − 1, p divides the numerator - but not the denominator since
p is a prime number. Since

(
p
m

)
∈ Z, this means p |

(
p
m

)
. Our hypothesis says

p | ap − a, and we have,

p | ap − a +

p−1∑
m=1

(
p

m

)
am = (a + 1)p − (a + 1)

and the theorem is proved by induction for the positive integers. We leave
proving the theorem for integers a ≤ 0 as an exercise for the reader.

Induction can be a useful way of proving divisibility, which is illustrated by
the following example.

Example 4.3. Show that 3n+1 | 23n + 1 for all integers n ≥ 0.

Proof. The statement applies for n = 0, since 3 | 23
0

+ 1 = 3, which gives the

base case. Next we assume 3k+1 | 23k + 1 for some integer k ≥ 0, and use that

assumption to prove 3k+2 | 23k+1

+ 1. We have,

23
k+1

+ 1 = (23
k

)3 + 13.

Notice that this is a sum of two cubes and by using the well-known identity

a3 + b3 = (a + b)(a2 − ab + b2), where a = 23
k

and b = 1, we get

23
k+1

+ 1 = (23
k

)3 + 13

= (23
k

+ 1)((23
k

)2 − 23
k

+ 1)

= (23
k

+ 1)((23
k

+ 1)2 − 3 · 23
k

).

By the induction hypothesis 3k+1 | 23
k

+ 1, so we have to show that (23
k

+

1)2 − 3 · 23k is divisible by 3. By using the induction hypothesis 3k+1 | 23k + 1,

then clearly 3 | (23k + 1)2 and noting that 3 | 3 · 23k , thus the difference is also

divisible by 3. Which gives the desired result, 3k+2 | 23k+1

+ 1. By the principle
of mathematical indcution we are done.

Even some of the more difficult competitive number theory problems can be
proved by mathematical induction. The following is a proof of problem 6 at the
1988 International Mathematical Olympiad, often deemed as one of the most
difficult IMO problems. This proof was originally written by Dr J. Campbell
(Canberra)1.

1Campbell, John. A Solution to 1988 IMO Question 6 (The Most Difficult Question Ever
Set at an IMO). Accessible at: http://www.wfnmc.org/mc19882campbell.pdf
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Example 4.4 (IMO 1988). Let a and b be positive integers such that ab + 1
divides a2 + b2. Show that

k =
a2 + b2

ab + 1

is the square of an integer.

Proof. Some testing suggests k = (GCD(a, b))2. We will prove this by induction
on ab. By symmetry of a and b, we may assume a ≤ b. We choose to include
a = 0 as a possible value for a (which doesn’t affect the proof, since we’re
proving for all greater integers). This makes the induction basis trivial, ab = 0
imply a = 0 and thereby k = b2 = (GCD(b, a))2. Now for our hypothesis we
assume that the statement applies for all values of ab where 0 ≤ ab < anbn. To
prove it applies for anbn, the next move is to look for an integer c which satisfies

0 ≤ c < bn

and

k =
a2n + c2

anc + 1
=

a2n + b2n
anbn + 1

If such an integer exists, 0 ≤ anc < anbn and therefore k = (GCD(an, c))
2 by

the induction hypothesis. To find c, we solve

k =
a2n + c2

anc + 1
=

a2n + b2n
anbn + 1

The fractions are equal, so we may subtract the numerators and denominators,
(note that we want c < bn ⇒ bn − c 6= 0)

k =
b2n − c2

anbn − anc
=

(bn + c)(bn − c)

an(bn − c)
=

bn + c

an

or
c = ank − bn

Notice that c is an integer and GCD(an, c) = GCD(an, bn), which means the
proof will be finished if we can prove 0 ≤ c < bn. First we prove the right-hand
inequality

k =
a2n + b2n
anbn + 1

<
a2n + b2n
anbn

=
an
bn

+
bn
an

which imply (since an ≤ bn),

ank <
a2n
bn

+ bn ≤
b2n
bn

+ bn = 2bn ⇒ ank − bn < bn ⇒ c < bn

Next we prove 0 ≤ c. Because k > 0 and a2n + c2 > 0 we have

k =
a2n + c2

anc + 1
⇒ anc + 1 > 0⇒ c >

−1

an
≥ −1

Which implies, since c is an integer, c ≥ 0. For every bn there exists a c = ank−
bn satisfying the stated criteria, and the statement is proven by induction.
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4.1 Problems

Problem 4.1. Prove 6 | n3 − n for all n ∈ N.

Problem 4.2. Prove that 6n − 1 is divisible by 5 for all n ∈ N.

Problem 4.3. Prove that (2n)!
n! = 2n · 1 · 3 · 5 · · · (2n− 1) for all n ∈ N.

Problem 4.4. Show that all numbers of the form

1003, 10013, 100113, 1001113, 10011113, . . .

are divisible by 17.

5 Graph theory

Graph theory is the theory about graphs, that is structures of vertices joined
together with edges. Induction is often useful for proving properties true for
certain graphs.

Example 5.1. Show that in a tree2 with v vertices there are exactly v − 1
edges.

Proof. Let the induction hypothesis be that every tree with v, v− 1, v− 2, . . . , 1
vertices respectively contains v−1, v−2, v−3, . . . , 0 edges. It is easy to verify that
all trees with 1 vertex have 0 edges, and that all trees with 2 vertices have 1 edge.
Now consider an arbitrary tree with v+1 vertices. The induction step is to prove
that the tree has v edges.

We know that in a tree there is exactly one path between every pair of
vertices. Hence, removing the edge between two vertices yields two separate
components with n and v + 1 − n vertices each. It is evident that we cannot
create new paths between vertices by removing an edge, thus both components
are trees. But 1 ≤ n < v, so according to our induction hypothesis they have
n − 1 and v − n edges respectively. However we removed one edge from the
original graph. Consequently the tree with v edges had n − 1 + v − n + 1 = v
edges, so the induction hypothesis holds.

Example 5.2. Show that a simple graph3 with 2n vertices that contains no
triangle has at most n2 edges. A triangle is a set of 3 vertices such that any two
of them are connected by an edge of the graph.

Proof. The problem is equivalent to proving that if there are more than n2 edges
in a graph with 2n vertices, there has to be a triangle. We can assume that
there are n2 + 1 edges, since more edges only would result in more triangles.

2https://en.wikipedia.org/wiki/Tree_(graph_theory)
3https://mathworld.wolfram.com/SimpleGraph.html
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Our induction hypothesis is that there exist at least one triangle in a graph
with 2n vertices and n2+1 edges. When n = 1 there are two vertices, which can-
not have more than one edge connecting them. Since 1 < n2 +1 the assumption
holds for the base case n = 1.

Consider a graph with 2(n+1) vertices and (n+1)2 +1 edges. Suppose that
there’s an edge between the vertices u and v. The subgraph not containing u
and v have 2n vertices. Notice that this graph either has at least n2 + 1 edges
or at most n2 edges. In the former case there must be a triangle according to
the induction hypothesis. If there instead are at most n2 edges, there will be at
least (n + 1)2 + 1 − 1 − n2 = 2n + 1 edges between u or v and the sub graph.
But there are only 2n vertices in the subgraph, so by the pigeonhole principle
u and v must have edges connecting to the same vertex in the subgraph, hence
forming a triangle.

5.1 Problems

Problem 5.1. Show that a complete graph with v vertices has v(v−1)
2 edges.

Problem 5.2 (Euler’s formula). Prove that in connected planar4 graphs with V
vertices, E edges and F faces (regions bounded by edges), the following formula
is true

V − E + F = 2.

When using Euler’s formula, we always include the infinitely large face on the
outside.

6 Combinatorial geometry

In this section we will look at some problems that contains the objects from
geometry and the ideas from combinatorics. There are a lot of interesting ideas
that can be combined with induction to solve these types of problems. Usually
we are dealing with points or lines in the plane and we want to investigate
some property of it. A common idea that we will apply later on is to remove
some points such that we can apply the induction hypothesis on the remaining
points and after that add back the missing points and try to find something
that could potentially help us. In the introduction we talked about splitting up
the inductive step but we haven’t seen any problems where that could be useful
yet. Let’s do that now. Consider the following problem.

Example 6.1. Prove that each square can be divided into n smaller squares
for n ≥ 6.

Proof. Let P (n) be the statement that each square can be divided into n smaller
squares. Notice that a single square can easily be divided into 4 smaller squares
thus adding 3 new squares.

4https://en.wikipedia.org/wiki/Planar_graph
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By this observation we know that if P (k) is true for some integer k ≥ 6, then
P (k + 3) is also true. Hence we need 3 base cases to complete the proof. We
need to find constructions for n = 6, 7, 8, and that is relatively easy to do.

By the principle of mathematical induction we are done.

Example 6.2 (SMT 2008, P6). Let Q1, Q2, ..., Qn be n ≥ 2 distinct points in
the plane. We colour the midpoints of all possible segments between the points
blue (QiQj , 1 ≤ i < j ≤ n). What is the least possible number of distinct blue
points?

Proof. Some testing suggests that the answer is 2n − 3 blue points. We will
show that this is the lower bound and leave the construction as an exercise for
the reader. We proceed by induction. As usual we check if the base case is true.
If n = 2 then we need at least 2 · 2− 3 = 1 blue point which is obviously true.
As the induction hypothesis we assume that the statement is true for n = k for
some integer k ≥ 2. Let us consider any arrangement of k + 1 points in the
plane. By using a perturbation argument we can rotate the plane such that the
points have no common x-coordinate (why can we do this?). Label the points
P1, P2, . . . , Pk+1 from left to right. The trick is to remove the point Pk+1 so
that we can use the induction hypothesis on the remaining k points. When we
add back the point Pk+1 we have to find at least (2(k + 1)− 3)− (2k − 3) = 2
new blue points. We can easily do this by noting that the midpoint of Pk+1Pk

and Pk+1Pk−1 must be new, since these two midpoints are to the right of the
other midpoints.

P1

P2

Pk−1

Pk

Pk+1
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7 Problems

In the final section we have collected various problems which can be solved using
mathematical induction. Have fun solving!

Problem 7.1. Show that nn ≥ (n + 1)(n−1) for all positive integers n.

Problem 7.2. Show that

12 + 22 + 32 + ... + n2 =
2n3 + 3n2 + n

6
.

Problem 7.3. A sequence a1, a2, ... is defined by a1 = 0 and an+1 = 2a2n −
5an + 4. What is a31415?

Problem 7.4 (Formula for geometric sum). Let n ∈ N, a ∈ R and a 6= 1.
Prove

n∑
m=0

am =
an+1 − 1

a− 1

Problem 7.5 (Russia, 1993). The integers from 1 to n are written in a line
in some order. The following operation is performed with this line: if the first
number is k then the first k numbers are rewritten in reverse order. Prove that
after some finite number of these operations, the first number in the line of
numbers will be 1.

Problem 7.6 (British Mathematical Olympiad Round 1 2010/11, P4 ). Isaac
has a large supply of counters, and places one in each of the 1 × 1 squares of
an 8 × 8 chessboard. Each counter is either red, white or blue. A particular
pattern of coloured counters is called an arrangement. Determine whether there
are more arrangements which contain an even number of red counters or more
arrangements which contain an odd number of red counters. Note that 0 is an
even number.
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