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Points and Lines in Combinatorial Geometry

1  Introduction
Combinatorial geometry is a blend of combinatorics and geometry. It deals with combinatorial problems that
have a geometric setting and combines techniques from combinatorics, geometry, graph theory, number theory
and more. Problems from combinatorial geometry appear frequently in mathematical olympiads and our aim is
to help you learn some basic instruments for how to solve them. We will deal mostly with combinatorial
geometry that revolves around lines and points in the plane, but we note that combinatorial geometry can also
deal with other geometrical objects and higher dimensions.

Because of the great variety of useful techniques related to combinatorial geometry, we have decided not to
cover the following techniques: induction, invariants and monovariants. For interested readers we recommend
the introductory articles about the Invariant Principle3 and Induction4 on the Brilliant Math & Science Wiki.
Knowledge of these subjects is not required for any parts of this text, but may be useful in other contexts.

1.1  Conventions in Combinatorial Geometry
Often in combinatorial geometry problems, you are given a set of points or a set of lines with some form of
constraint. The two most common constraints are that no three points are collinear and that no three lines are
concurrent. A number of points are collinear if there exists a line that passes through all of them. Similarly, a
number of lines are concurrent if they share a common point. Another common constraint in combinatorial
geometry problems is that the points or lines are in general position. This constraint is a bit arbitrary in the sense
that it means that there are no ‘special’ cases - which must be interpreted according to the context. In
combinatorial geometry, this means that no three points are collinear, no three lines are concurrent, that no two
lines are parallel, and that no two points or lines coincide. Sometimes it also means that no four points are
concyclic, i.e lie on a circle, but this will not be relevant for the problems in this text.

2  Points, Lines and Faces
A common task in combinatorial geometry is to count points and lines. In this chapter we will show some
effective ways in which this can be done.

Example 2.0.1. We have n lines in general position. What is the number of intersection points expressed in n?

Solution. We begin by noticing that, since all lines are in general position, every pair of lines must intersect, as
no pair of lines are parallel. Additionally, this intersection point is unique as no third line can pass through it
(otherwise we would have three concurrent lines which is not allowed as the lines are in general position).
Hence the number of intersection points is equal to the number of possible pairs of n lines.

Counting the number of possible pairs of lines is easy. We have n choices for the first line and for the𝑛 𝑛 − 1
second. Hence we have possible ordered pairs of lines. As the order doesn’t matter, we divide this𝑛(𝑛 − 1)
number by 2 as there are 2 possible orderings for each pair of lines. Hence the number of possible pairs of 𝑛

lines is which was equal to the number of intersection points. □
𝑛(𝑛−1)

2

Exercise 2.0.2. Find a construction with lines (not necessarily in general position) such that the number of𝑛
intersection points satisfy:(𝐼)

(a) 𝐼 = 1
(b) 𝐼 = 𝑛 − 1

4 “Induction.” Brilliant Math & Science Wiki, brilliant.org/wiki/induction/.
3 “Invariant Principle.” Brilliant Math & Science Wiki, brilliant.org/wiki/invariant-principle-definition/.
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(c) 𝐼 = 𝑛

2.1  Binomial coefficients

In combinatorics, binomial coefficients denote the number of ways to choose objects from a set of
𝑛
𝑘( ) 𝑘 𝑛

objects (where every object may only be chosen once and each object is unique). Binomial coefficients have a
special notation which is read as “n choose k”. A useful property of the binomial coefficient is the

𝑛
𝑘( )

recurrence relation below:

Exercise 2.1.1. Prove that using the definition of binomial coefficients.
𝑛
𝑘( ) = 𝑛−1

𝑘( ) + 𝑛−1
𝑘−1( )

Theorem 2.1.2. . (Where , spoken “ factorial”, is )
𝑛
𝑘( )=

𝑛!
𝑘!(𝑛−𝑘)! 𝑎! 𝑎 𝑎 · (𝑎 − 1) · (𝑎 − 2) ·... · (2) · 1

Proof. We will use a generalized version of the argument used in Example 2.0.1 in this solution. Consider
choosing an ordered subset of size from a set of size . We have choices for the first object, for the𝑘 𝑛 𝑛 𝑛 − 1
second, for the third and so on until we have choices for the th object. Hence there are𝑛 − 2 𝑛 − (𝑘 − 1) 𝑘

possible ordered subsets of size . To compute we only𝑛 · (𝑛 − 1) ·... · (𝑛 − (𝑘 − 1)) =
𝑛!

(𝑛−𝑘)! 𝑘
𝑛
𝑘( )

need to divide by the number of ways to permute a set of size , which is equal to the number of ordered subsets𝑘

of size from a set of size , i.e. .  Hence . □𝑘 𝑘 𝑘 · (𝑘 − 1) ·... · 1 =  𝑘!
𝑛
𝑘( )= 𝑛!

𝑘!(𝑛−𝑘)!

Exercise 2.1.3. Let S be a set of n points in general position. How many triangles with vertices in S are there?

2.2  Euler’s Characteristic Formula
Sometimes, it can be a good idea to convert a construction into a graph in order to enable applications of
techniques from graph theory. A graph consists of vertices and edges. An edge connects two vertices. A planar
graph is a special type of graph. It is a connected finite graph which can be drawn on the plane without any
intersecting edges (A graph is connected if there exists a path traversing only edges between every pair of
vertices). These edges are not necessarily straight lines. A face is an area enclosed completely by edges and may
be infinitely large. In a graph , and are used to denote the number of vertices, edges and faces𝑉 𝐸 𝐹
respectively. Note that the number of faces also includes the infinite region outside/surrounding the graph.

Theorem 2.2.1. (Euler’s Characteristic Formula) In a planar graph the equality holds.𝑉 − 𝐸 + 𝐹 = 2

Example 2.2.2. How many regions do lines in general position split the plane into?𝑛

Solution. We begin by converting our construction to a planar graph. Let all intersection points between the lines
become vertices and let every line segment between two intersection points become an edge. Let the line
segments going off to infinity bend to meet at a point (and hence become finite in length). This transformation
does not create nor remove any regions (faces). Hence: .𝑉 = 1 + 𝑛𝑜.  𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 =  1 +

𝑛
2( )

Every line is divided by intersection points and 2 endpoints into segments (edges). Hence .𝑛 − 1 𝑛 𝐸 =  𝑛2

Applying Euler’s characteristic formula and rearranging, we get that: . □𝐹 =
𝑛2+𝑛+2

2
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Exercise 2.2.3. (3Blue1Brown) If you take points on a circle, then connect every pair of them with a line such𝑛
that no 3 lines are concurrent, how many regions do these lines cut the circle into?

3  Pigeonhole Principle
The pigeonhole principle, also known as Dirchlet’s box principle, is sometimes considered as something very
obvious. However, whether it’s obvious or not, it is a very useful tool when solving problems in combinatorics
and combinatorial geometry. The challenge one faces while solving problems using this principle is finding the
correct “pigeons” (objects) and the correct “pigeonholes” (containers). Therefore, this chapter will mainly
consist of practice problems. Note that the “pigeons” and “pigeonholes” are not necessarily discrete (see
Theorems 3.2 & 3.3).

Theorem 3.1. (Dirchlet’s box principle) If , or more, pigeons are placed into holes, then there exists a𝑛𝑘 + 1 𝑛
hole which contains or more pigeons. .𝑘 + 1 ∀ 𝑛, 𝑘 ∈ ℕ

Theorem 3.2. If more than units of fluid are poured into containers, then there exists a container with𝑛𝑘 𝑛

more than units of fluid. .𝑘 ∀ 𝑛 ∈ ℕ,  𝑘 ∈ ℝ+

Theorem 3.3. If the integral of a function is greater than , when evaluated over an interval of size , then𝑓 𝑛𝑘 𝑛 𝑓

must attain a value greater than somewhere on this interval. .𝑘 ∀𝑛, 𝑘 ∈ ℝ+

Exercise 3.4. Several arcs, the sum of whose lengths is greater than 2π, lie on a circle of radius 1. Prove that at
least two of the arcs share a common point.

Example 3.5. Show that among any 5 points inside an equilateral triangle of unit side length, there are 2 points
which are at most 1/2 units apart.

Solution. Divide the unit triangle into 4 equilateral triangles with the sides of 1/2 units by connecting the
midpoints of the large triangle. We now have 4 holes (small triangles) and 5 pigeons (points), which means one
of the triangles must contain at least two points. In an equilateral triangle, the greatest distance between two
points is the side length, hence there are two points which are at most 1/2 units apart. □

Exercise 3.6. Two lines and intersect at at an angle of , and create two opposing sectors of theℓ
1

ℓ
2

𝑝
180°

𝑛
plane. Given a set of points in the plane (including ), prove that two such lines and can always𝑆 𝑛 + 1 𝑝 ℓ

1
ℓ

2

be chosen such that the two opposing sectors of the plane they create contain no points of . (Points of CAN𝑆 𝑆
lie on and )ℓ

1
ℓ

2

Exercise 3.7. There are 6 points in a 3 by 4 rectangle. Prove that there are two points whose distance does not
exceed .5
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Exercise 3.8. (SMT-finals 2008) A convex -gon has angles (in degrees), where every is a𝑛 𝑎
1
,  𝑎

2
,  𝑎

3
,..., 𝑎

𝑛
𝑎

𝑘

positive whole number divisible by ( ). Show that if , then two of the -gon’s sides must36 𝑘 ∈ {1, 2,..., 𝑛} 𝑛 > 5 𝑛
be parallel.

Exercise 3.9. (Cut The Knot) Prove that among any 9 points in a triangle with area 1, there are three points that
form a triangle of area not exceeding 1/4. Prove that this is also true if instead of 9 points, there are only 7.

Exercise 3.10. (Based on a problem from the book “Problem-Solving Strategies” by Arthur Engel) Consider a
line in the plane and a point on . One places 49 points on (all on the same side of ) such that all ofℓ 𝑝

0
ℓ ℓ 𝑝

0

their distances to are integers. Given that no two points coincide and that the distance from every point to𝑝
0

𝑝
0

is at most 76 units, show that there exist two points on the line (not including ) which are exactly 21 units𝑝
0

apart.

4  Pick’s Theorem
A lattice point is a point in the cartesian coordinate system ( - and -axes are perpendicular) where the - and𝑥 𝑦 𝑥 𝑦
-coordinates are integers. One famous and useful theorem using lattice points is Pick’s theorem, which expresses
the area of a polygon with all of its vertices on lattice points. The theorem expresses the area in terms of the
number of lattice points in the interior (I) and on the boundary (B) of the polygon.

Theorem 4.1. (Pick’s Theorem) For any polygon with all vertices on lattice points in a lattice grid, its area 𝐴

can be expressed as , where is the number of lattice points inside of the polygon, and the𝐴 = 𝐼 +
𝐵
2 − 1 𝐼 𝐵

number of lattice points on the boundary of the polygon.

Exercise 4.2. Prove that Pick’s theorem holds for all axis-parallel rectangles.

Example 4.3. Prove that Pick’s theorem holds for all right-angled triangles with axis-parallel short legs.

Solution. Assume that Pick’s theorem holds for all axis-parallel rectangles. Denote by a right-angled triangle𝑇
with axis-parallel short legs as in Figure 4.1. Place a congruent right angled triangle along the hypotenuse of the
original right-angled triangle to form an axis-parallel rectangle, which we denote by (see Figure 4.1.). By𝑅
symmetry, these two triangles have equal area, number of interior points and number of boundary points.
Looking at Figure 4.1, we notice the following: (Note that it is useful to regard , and as functions).𝐴 𝐵 𝐼

● 2 · 𝐴(𝑇) = 𝐴(𝑅)
● 𝐵(𝑇) =  𝑛 + 𝑚 + 𝑘 − 3
● 𝐵(𝑅) =  2(𝑛 + 𝑚 − 2) = 2 · (𝐵(𝑇) − 𝑘 + 1)
● 2 · 𝐼(𝑇) =  𝐼(𝑅) − (𝑘 − 2)

4
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Figure 4.1. , and represent the number of lattice points (including vertices), not length.𝑚 𝑛 𝑘

Using these equations and Pick’s theorem for axis-parallel rectangles, we get that:

● .2 · 𝐴(𝑇) = 𝐴(𝑅) = 𝐼(𝑅) + 1
2 𝐵(𝑅) − 1 = 2 · 𝐼(𝑇) + (𝑘 − 2) +

2·(𝐵(𝑇)−𝑘+1)
2 − 1

● .2 · 𝐴(𝑇) = 2 · 𝐼(𝑇) + 𝐵(𝑇) + (𝑘 − 2) + (− 𝑘 + 1) − 1 = 2 · 𝐼(𝑇) + 𝐵(𝑇) − 2
● . Which is precisely Pick’s theorem. □𝐴(𝑇) = 𝐼(𝑇) + 1

2 𝐵(𝑇) − 1

Exercise 4.4. Show that all rectangles with vertices on lattice points have integer area.

Example 4.5. Prove that Pick’s theorem holds for all triangles. (Except the type from Example 4.3.)

Solution. Let be a triangle with vertices on lattice points. Construct a rectangle such that: ’s vertices are on𝑇 𝑅 𝑅
lattice points, contains and ’s boundary contains a maximal amount of ’s vertices (the amount of vertices𝑅 𝑇 𝑅 𝑇
will be 2 or 3). Afterwards, if one of the sides of is axis-parallel, then let extend a distance beyond this side,𝑇 𝑅
so ’s boundary does not contain a full side of (this may reduce the number vertices of on ’s boundary to𝑅 𝑇 𝑇 𝑅
2).

Case 1: ( ’s boundary contains all 3 of ’s vertices) Then divides in 3 axes-parallel right-angled triangles or𝑅 𝑇 𝑇 𝑅
rectangles with vertices on lattice points (see Figure 4.2), and let these be , and . Looking at the𝐴 𝐵 𝐶
construction, we notice the following:

● 𝐼(𝑅) = 𝐼(𝐴) + 𝐼(𝐵) + 𝐼(𝐶) + 𝐼(𝑇) + (𝐵(𝑇) − 3)
● 𝐵(𝑅) = 𝐵(𝐴) + 𝐵(𝐵) + 𝐵(𝐶) − 𝐵(𝑇)
● 𝐴(𝑅) = 𝐴(𝐴) + 𝐴(𝐵) + 𝐴(𝐶) + 𝐴(𝑇)

Figure 4.2. , , and denote triangles and rectangles whose union is the rectangle .𝐴 𝐵 𝐶 𝑇 𝑅

5
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Figure 4.3. , , , and denote triangles and rectangles whose union is the rectangle . denotes the number of𝐴 𝐵 𝐶 𝐷 𝑇 𝑅 𝑚
lattice points (excluding vertices) that lie on any common boundaries between , , and (these are circled in𝐴 𝐵 𝐶 𝐷
green for clarity).

Case 2: ( ’s boundary contains only 2 of ’s vertices) Then can be divided into 4 axes-parallel right-angled𝑅 𝑇 𝑅
triangles and rectangles with vertices on lattice points, specifically the boundary of or the vertices of . Let𝑅 𝑇
these be , , and (see Figure 4.3.). Let be the number of lattice points (possibly none) on the shared𝐴 𝐵 𝐶 𝐷 𝑚
boundaries of , , and (excluding their vertices). Looking at the picture, we notice that:𝐴 𝐵 𝐶 𝐷

● 𝐼(𝑅) = 𝐼(𝐴) + 𝐼(𝐵) + 𝐼(𝐶) + 𝐼(𝐷) + 𝐼(𝑇) +  𝐵(𝑇) + 𝑚 − 2
● 𝐵(𝑅) = 𝐵(𝐴) + 𝐵(𝐵) + 𝐵(𝐶) + 𝐵(𝐷) −  2𝑚 − 𝐵(𝑇) − 4
● 𝐴(𝑅) = 𝐴(𝐴) + 𝐴(𝐵) + 𝐴(𝐶) + 𝐴(𝐷) +  𝐴(𝑇)

In both Case 1 and Case 2, denote by the sum of all the interior points of , , (and in Case 2), by the𝑆
𝐼

𝐴 𝐵 𝐶 𝐷 𝑆
𝐵

sum of all their boundary points, and by the sum of their areas. Furthermore, using Pick’s theorem for𝑆
𝐴

axis-parallel right-angled triangles and rectangles, we have that:

𝐴(𝑋) = 𝐼(𝑋) + 1
2 𝐵(𝑋) − 1,  𝑋 ∈ {𝐴,  𝐵,  𝐶,  𝐷,  𝑅}

Combining all of these equations and denotations, we have that:

Case 1: 𝐴(𝑅) − 𝐴(𝑇) = 𝑆
𝐴

= 𝑆
𝐼

+ 1
2 𝑆

𝐵
− 3 = 𝐼(𝑅) − 𝐼(𝑇) − 𝐵(𝑇) + 3 +  1

2 (𝐵(𝑅) + 𝐵(𝑇)) −  3

𝐴(𝑅) − 𝐴(𝑇) = 𝐼(𝑅) + 1
2 𝐵(𝑅) − 1 + 1 − 𝐼(𝑇) − 1

2 𝐵(𝑇)

(By Pick’s theorem for , & )𝐴 𝐵 𝐶
(By Pick’s theorem for )𝐴(𝑅) − 𝐴(𝑇) = 𝐴(𝑅) + 1 − 𝐼(𝑇) − 1

2 𝐵(𝑇) 𝑅

− 𝐴(𝑇) =  − 𝐼(𝑇) − 1
2 𝐵(𝑇) + 1

Case 2: 𝐴(𝑅) − 𝐴(𝑇) = 𝑆
𝐴

= 𝑆
𝐼

+ 1
2 𝑆

𝐵
− 4

𝐴(𝑅) − 𝐴(𝑇) = 𝐼(𝑅) − 𝐼(𝑇) − 𝐵(𝑇) − 𝑚 + 2 +  1
2 (𝐵(𝑅) + 𝐵(𝑇) + 2𝑚 + 4) −  4

𝐴(𝑅) − 𝐴(𝑇) = 𝐼(𝑅) + 1
2 𝐵(𝑅) − 1 + 1 + (𝑚 − 𝑚 + 4 − 4) −  𝐼(𝑇) − 1

2 𝐵(𝑇)

(By Pick’s theorem for , , & )𝐴 𝐵 𝐶 𝐷
(By Pick’s theorem for )𝐴(𝑅) − 𝐴(𝑇) = 𝐴(𝑅) + 1 − 𝐼(𝑇) − 1

2 𝐵(𝑇) 𝑅

− 𝐴(𝑇) =  − 𝐼(𝑇) − 1
2 𝐵(𝑇) + 1

Multiplying by , we get that: , which is exactly Pick’s Theorem. □− 1 𝐴(𝑇) =  𝐼(𝑇) + 1
2 𝐵(𝑇) − 1

Exercise 4.6. Prove that there does not exist an equilateral triangle with all 3 vertices on lattice points.

Problem 4.7. Prove that if Pick’s theorem holds for all -gons, then it holds for all -gons. (Use the𝑛 𝑛 + 1
property that every polygon can be triangulated5)

5  Geometric Constructions
With any problem in combinatorial geometry, the geometrical properties of the construction will be essential for
the solution. In this chapter we will provide a multitude of combinatorial geometry problems whose solutions
use geometric facts related to the construction. Most of these facts are unique to each problem, but a lot of them

5 Triangulation is the process of dividing a n-gon into n−2 triangles with the same vertices as the n-gon. This
process can amongst other things prove that the inner angle sum of a n-gon is: (n−2)×180°.

6
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are related to: the triangle inequality, area, perimeter, angles and extreme positions (see chapter 6). These facts
can then be used to find/put some constraint on the construction, which can further lead to a solution.

Theorem 5.1. (Triangle Inequality) In any non-degenerate triangle (a triangle with a non-zero area), the△𝐴𝐵𝐶
inequalities , and hold.|𝐴𝐵| < |𝐵𝐶| + |𝐴𝐶| |𝐵𝐶| < |𝐴𝐵| + |𝐴𝐶| |𝐴𝐶| < |𝐴𝐵| + |𝐵𝐶|

Example 5.2. Let be a convex quadrilateral, prove that .□𝐴𝐵𝐶𝐷 |𝐴𝐶| + |𝐵𝐷| > |𝐴𝐵| + |𝐶𝐷|

Solution. Begin by denoting the intersection of the diagonals and by . Since is convex, will𝐴𝐶 𝐵𝐷 𝑂 □𝐴𝐵𝐶𝐷 𝑂
always be inside the quadrilateral. Using the triangle inequality on the triangles and gives the△𝐴𝐵𝑂 △𝐶𝐷𝑂
following:

● Triangle inequality in :△𝐴𝐵𝑂 |𝐴𝑂| + |𝐵𝑂| > |𝐴𝐵|
● Triangle inequality in :△𝐶𝐷𝑂 |𝐶𝑂| + |𝐷𝑂| > |𝐶𝐷|
● □⇒ |𝐴𝐵| + |𝐶𝐷| < |𝐴𝑂| + |𝐵𝑂| + |𝐶𝑂| + |𝐷𝑂| = |𝐴𝐶| + |𝐵𝐷|

Exercise 5.3. Let be a convex quadrilateral with and let be a point in its interior. Let□𝐴𝐵𝐶𝐷 |𝐴𝐷| < |𝐵𝐶| 𝑃 𝑥
and be the distances6 from to and , respectively. Show that .𝑦 𝑃 𝐴𝐵 𝐶𝐷 𝑥 + 𝑦 ≤ |𝐵𝐶|

Example 5.4. In a set of points, the triangle with the smallest area is given. Find the region where the other
points of the set could be.

Solution. Let be the triangle with the smallest area. Then no other point should be able to create a△𝐴𝐵𝐶 𝑋
triangle together with 2 of the vertices of , and with area smaller than . Let's consider where△𝐴𝐵𝐶 △𝐴𝐵𝐶 𝑋
needs to be so that has an area larger than . As area of a triangle is it’s base times its’ height all△𝑋𝐵𝐶 △𝐴𝐵𝐶
over 2, (and and share base ) the height of from to must be larger than the height△𝑋𝐵𝐶 △𝐴𝐵𝐶 𝐵𝐶 △𝑋𝐵𝐶 𝑋 𝐵𝐶
from to ( ). Hence cannot lie on the strip of width parallel to with in its middle. Similar𝐴 𝐵𝐶 ℎ

𝑎
𝑋 2 · ℎ

𝑎
𝐵𝐶 𝐵𝐶

constraints apply for in relation to the sides and . Hence we have determined the zones where must𝑋 𝐴𝐵 𝐴𝐶 𝑋
be if we are to cause a contradiction, and hence can be everywhere but in these zones (see Figure 5.1.). □𝑋

Figure 5.1. Green regions indicate where the other points can be if the blue triangle is the
triangle with the smallest area.

Exercise 5.5. (Cut The Knot) A finite number of points in the plane have the property that the area of a triangle
formed by any three of them is at most 1. Prove that there exists a triangle of area not more than 4 that contains
all points.

Exercise 5.6. In a set of points, the pair of points A and B are the closest/furthest away from each other. Prove
that all other points in the set must lie on the outside/inside (respectively) of the circle with centre at the
midpoint of segment and with diameter .𝐴𝐵 3 · |𝐴𝐵|

Example 5.7. Given that the length of the the longest side of a triangle is , find the maximum area of that𝑥
triangle in terms of .𝑥

6 The distance from a point to a line is defined to be the distance from the point itself to the orthogonal
projection of the point onto the line. This is the shortest distance between the point and any point on the line.
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Solution. Denote the triangle by with longest side of length . From Exercise 5.5 we know that can△𝐴𝐵𝐶 𝐴𝐵 𝑥 𝐶

therefore only exist inside a circle with radius with centre , the midpoint of . However, this means
3𝑥
2 𝑀 𝐴𝐵

that is at most distance from and therefore has a height of at most . This gives that the𝐶
3𝑥
2 𝐴𝐵 △𝐴𝐵𝐶

3𝑥
2

maximum area of is . To verify that such a triangle exists, consider the case when is△𝐴𝐵𝐶
3𝑥2

4 △𝐴𝐵𝐶

equilateral. □

There are very many geometrical properties that could be useful in combinatorial geometry problems, all of
which cannot be covered in this text. However, some are covered in the following exercises:

Exercise 5.8. (Finnish High School Competition 2007) There are five points in the plane, no three of which are
collinear. Show that some four of these points are the vertices of a convex quadrilateral.

Exercise 5.9. Using the result from the previous problem, prove that there exists a non-acute (right or obtuse)
angled triangle with vertices in any set of five points in the plane in general position.

Exercise 5.10. Prove that there exists a non-acute (right or obtuse) angled triangle with vertices in any set of
four points in the plane in general position.

Exercise 5.11. (Ung Vetenskapssport Matematikturné 2021) Given is a triangle in the plane with vertices at
coordinates (0,0), (1,5) and (3,3). At every move, we may move one vertex, lets say , to another point such𝐴 𝐴'
that is parallel to the line through the other two vertices. Show that the triangle’s vertices cannot end up𝐴𝐴'
having coordinates (1,3), (4,1) and (5,4) at the same time after finitely many moves.

Exercise 5.12. Prove that a triangle inside a parallelogram of area 2 must have an area not greater than 1.

Exercise 5.13. (Adapted from IMO Winter Camp 2009) There are five points in the plane. Prove that at least
four of them can be selected such that no three of these are vertices of an equilateral triangle.

6  Extremal Arguments
An Extremal Argument (also called Extremal Principle) is a method that can often be used in combinatorial
geometry to prove that there exists a construction, or an object inside a construction, that satisfies some wanted
condition. An example of such a problem would be proving the Sylvester-Gallai Theorem:

Theorem 6.1: (Sylvester-Gallai Theorem) For any finite non-collinear set of points in the plane there is a line
passing through exactly two of them.

In combinatorial geometry problems, there are often infinitely many constructions, and objects inside those
constructions, which we need to consider. However, to limit the possibilities and gain more information we can
always consider the “extreme” construction or object, with a property that is the smallest/largest for all such
objects or constructions. Depending on the property we consider, this can give us a lot of information. From this
we can either try to find a construction that satisfies our wanted condition directly, or we can instead assume that
our wanted condition does not hold for some construction and then try to find a contradiction to that assumption,
often by constructing a more “extreme” construction or object.

Examples of “extreme” properties that could be used for Extremal Arguments include:

● The path through a set of points that has a minimal or maximal length,
● The triangle with minimal/maximal perimeter, area, height or radius of the circumscribed circle,
● The quadrilateral (or other polygon) with the most/fewest points inside,
● The two points closest/furthest away from each other, or

8
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● The points furthest in some direction.

Proof. Denote by any finite non-collinear set of points in the plane. When there are only 2 points in , the𝑆 𝑆
result is obvious. Let us instead consider the case when we have 3 or more points in .𝑆

Let us consider a pair of a point in and a line passing through two other points in . (Such a pair will always𝑆 𝑆
exist since all points in are not collinear, and there are at least 3 points in ). Let us consider the “extreme”𝑆 𝑆
such pair such that the distance between and is minimal.(𝑃,  ℓ) 𝑃 ℓ

Now let us assume that the Sylvester-Gallai Theorem does not hold for , and try to find a contradiction. This𝑆
implies that, for our line there are at least 3 points in that it passes through, of which at least 2 are on theℓ 𝑆
same side of, or on, the normal from to . Of these points, let be the one furthest away from the normal,𝑃𝑃' ℓ 𝑃 𝐴
and be the one closest to the normal.𝐵

Figure 6.1. Blue points in are marked, as well as the normals to and to .𝐴,  𝐵,  𝑃 𝑆 𝑃𝑃' ℓ 𝐵𝐵' 𝐴𝑃

Let us label the normal from to , and notice that because and𝐵𝐵' 𝐴𝑃 𝐵 △𝐴𝑃𝑃' ∼ △𝐴𝐵𝐵' ∠𝑃𝐴𝑃' = ∠𝐵𝐴𝐵'

. This gives us that , and since the inequality∠𝑃𝑃'𝐴 = ∠𝐵𝐵'𝐴 = 90°
𝑃𝑃'
𝐴𝑃 = 𝐵𝐵'

𝐴𝐵 𝐴𝑃 > 𝐴𝑃' ≥ 𝐴𝐵

follows (see Figure 6.1.).𝑃𝑃' > 𝐵𝐵'

However, this implies that the distance from to the line is strictly smaller than the distance from P to ℓ.𝐵 𝐴𝑃
Hence we have reached a contradiction: that our pair is not the “extreme” such pair, since is(𝑃,  ℓ) (𝐵,  𝐴𝑃)
more “extreme”. Therefore our assumption that the Sylvester-Gallai Theorem does not hold for some finite
non-collinear set of points in the plane, is false. Hence the Sylvester-Gallai Theorem is true. □

Exercise 6.2. Let be a set of red and blue points (at least 2 of each) in the plane in general position. Prove that𝑆
there exists a triangle with vertices in such that not all vertices of are the same color and no other points𝑇 𝑆 𝑇
of lie inside .𝑆 𝑇

It is important to realise that an Extremal Argument does NOT have to end in a contradiction, but can instead be
slightly tweaked to construct a suitable construction satisfying the wanted condition.

Example 6.3. (Adapted from CMO 2017) Let be a set of points in the plane, such that any triangle with𝑆
vertices in has area of at most . Prove that there exists a line in the plane such that the distance to from𝑆 𝐴 ℓ ℓ
any point in is at most .𝑆 𝐴

Solution. Let us observe the longest segment ( ) and let . We therefore know that, for any𝑃𝑄 𝑃,  𝑄 ∈ 𝑆 |𝑃𝑄| = 𝑑
other point the distance of the perpendicular normal from to must be such that the area of𝑀 ∈ 𝑆 𝑚 𝑀 𝑃𝑄

is . Therefore we have that .△𝑃𝑄𝑀 ≤ 𝐴
𝑚×𝑑

2 ≤ 𝐴 ⇔ 𝑚 ≤
2𝐴
𝑑

9
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If we are done, since we can choose to be and have that the distance from any point to𝑑 ≥ 2 𝐴 ℓ 𝑃𝑄 𝑚 𝑀 ∈ 𝑆

is . If instead we can choose to be the perpendicular bisector (normal from theℓ 𝑚 ≤
2𝐴
𝑑 ≤ 𝐴 𝑑 < 2 𝐴 ℓ

midpoint) of and notice that and are the two points furthest away from in at a distance of𝑃𝑄 𝑃 𝑄 ℓ 𝑆
𝑑
2 <

. Note that, if there is a point such that the distance from to is , then either
2 𝐴

2 = 𝐴 𝑀 ∈ 𝑆 𝑚 ℓ 𝑀 𝑚 >
𝑑
2

or which contradicts the fact that is the longest𝑃𝑀 ≥ 𝑚 +
𝑑
2 > 𝑑 = 𝑃𝑄 𝑄𝑀 ≥ 𝑚 +

𝑑
2 > 𝑑 = 𝑃𝑄 𝑃𝑄

segment between two points in . □𝑆

Exercise 6.4. (Canadian IMO Training 2019) Given points in a plane with no three collinear, with red2𝑛 𝑛
points and blue points, prove that there exists a pairing of the red and blue points such that the segments𝑛
joining each pair are pairwise non-intersecting.

7  “Sweeping” Lines
The “sweeping technique” is a useful trick that occurs in many combinatorial geometry problems. A “sweeping
line” is an imaginary line that is swept or moved across the plane, stopping at some special points. We will
demonstrate further how we can use a “sweeping line” in the example below.

Example 7.0.1. There are points in the plane. Show that there exists a line which divides the plane into two2𝑛 ℓ
regions with points in each.𝑛

Solution. Let us define the set of points in the plane as for clarity. Notice that there are only finitely many2𝑛 𝑆
points in , therefore only finitely many lines connecting two points in , and therefore only finitely many𝑆 𝑆
slopes of lines connecting two points in . Let us now choose to be any line in the plane with a slope that does𝑆 ℓ'
not occur in the finite set of slopes of lines connecting two points in . Let us move “away” such that all the𝑆 ℓ'
points of are on one side of it.𝑆

Now we begin our “sweeping technique” with as our “sweeping line” without changing the slope of . As weℓ' ℓ'
“sweep” across the plane towards the points of we will eventually hit a point in , which we pass over. Noteℓ' 𝑆 𝑆
that cannot hit two different points in at the same time, as this would mean that the slope of was not suchℓ' 𝑆 ℓ'
that there does not exist a line connecting two points in with that slope. This means that we can “sweep”𝑆 ℓ'
over exactly points of , stop, and then our line will satisfy the wanted condition for . □𝑛 𝑆 ℓ' ℓ

Using the visualisation of moving lines across the plane, we can surprisingly solve many different problems.
The line doesn’t have to move in a linear direction either, it can rotate and change movements. However, the
crux is finding when and where to use this technique effectively.

Exercise 7.0.2. There are points in the plane in general position. Show that there exists parallel lines𝐶𝑛 𝐶 − 1
which split the plane into regions with points in each region.ℓ

1
,  ℓ

2
,  ...,  ℓ

𝐶−1
𝐶 𝑛

Exercise 7.0.3. (Finnish National High School Mathematics Competition 2010) Let be a non-empty subset of a𝑆
plane. We say that the point can be seen from if every point from the line segment belongs to . Further,𝑃 𝐴 𝐴𝑃 𝑆
the set can be seen from if every point of can be seen from . Suppose that can be seen from , and𝑆 𝐴 𝑆 𝐴 𝑆 𝐴 𝐵 𝐶
where is a triangle. Prove that can also be seen from any other point inside the triangle .𝐴𝐵𝐶 𝑆 𝐴𝐵𝐶
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7.1  Convex Hulls
A convex hull for the set of points is the smallest convex polygon which contains all points,𝑎

1
,  𝑎

2
,  ...,  𝑎

𝑛
𝑛

along its boundary or inside its interior. The convex hull of a set of points allows us to more formally define
when an object is “inside” or “outside” an arbitrary set of points.

Example 7.1.1. Prove that any line passing through the convex hull of a set of points must split the plane into
two regions such that there exists at least one point of the set in both regions.

Solution. Let be the set of points, be the convex hull of , and be the line passing through . Assume the𝑆 𝐻 𝑆 ℓ 𝐻
contrary, that splits the plane (and ) into two regions such that one region contains all points of . Thisℓ 𝐻 𝑆
implies that is split into two convex polygons, of which one does not contain a single point of . We can𝐻 𝑆
therefore remove this region of to get a smaller convex polygon containing all points of . However, the𝐻 𝑆
convex hull is by definition the smallest such convex polygon containing all points of , and since we have𝐻 𝑆
found a smaller such convex polygon we have reached a contradiction to our assumption. □

Exercise 7.1.2. (IMO Longlist 1966) Given points in the plane in general position. Prove that there𝑛 > 3
exists a circle passing through (at least) 3 of the given points and not containing any other of the points in its𝑛
interior.

It is also important to note that the vertices of the convex hull of a set of points must be in . These extremal𝑆 𝑆
points are often prime targets when examining problems with sets of points. Convex hulls can further be used in
combination with the “sweeping lines” technique to aid in solving combinatorial geometry problems by making
use of the more rigid “inside” and “outside” definitions these provide.

Exercise 7.1.3. There are points in the plane, no three of which are collinear. Show that there exists a line2𝑛 ℓ
through 2 points which splits the plane in half with points in each region.𝑛 − 1

Exercise 7.1.4. Show that for any set of points in general position, these points are the vertices of a𝑛
non-self-intersecting -gon.𝑛

8  Conclusion
Combinatorial geometry is a combination of combinatorics and geometry, and therefore both geometrical and
combinatorial knowledge is needed to solve problems in these contexts. It is a broad area of mathematics which
relates to everything from binomial coefficients, to the Pigeonhole principle, to convex hulls. In this text we
have tried to touch on as many of these areas as possible, but have therefore foregone the opportunity to be more
detailed and to go into more depth. (We encourage you to do this on your own, if you want). We have prioritised
providing diverse problems, methods and techniques over specific theorems and facts. With this text it was our
goal to make you better prepared for ANY combinatorial geometry problem you may encounter. But most of all,
we hope that you found this text and topic interesting too!

Happy solving!

9  Additional Problems
Problems in combinatorial geometry often do not rely on one single method or principle to be solved, but
require knowledge about multiple areas discussed in this text. Therefore there were some problems we felt were
more suitable to be given to you outside the context of only one area. This is also an opportunity for you to
encounter combinatorial geometry problems in a more natural problem solving setting.
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Problem 9.1. Given a set of points in general position in the plane such that any triangle with vertices𝑆 𝑛 + 3
in has area at most , show that there exists a triangle with area with at least 2 vertices in which covers𝑆 𝐴 𝐴 𝑆

points in .⌊ 𝑛
4 ⌋ 𝑆

Problem 9.2. (Continuation of Exercise 5.5.) Show that in any set of points in general position, there exist at𝑆

least non-right angled triangles.⌈
𝑛
4( )

𝑛−4 ⌉

Problem 9.3. (“Problems in Plane and Solid Geometry” by Prasolov) Several points are marked on a circle, is𝐴
one of them. Which convex polygons with vertices in these points are more numerous: those that contain or𝐴
those that do not?

Problem 9.4. (“Problems in Plane and Solid Geometry” by Prasolov) Prove that the number of triangles with

vertices in the vertices of a regular n-gon is equal to the integer nearest .
𝑛2

12

Problem 9.5. (Canadian IMO Training 2009) A set of points on a plane has the property that if , then𝑆 𝐴, 𝐵 ∈ 𝑆
the midpoint of and is also in . Prove that either or is infinite.𝐴 𝐵 𝑆 |𝑆| = 1 𝑆

Problem 9.6. (Canadian IMO Training 2010) A strip of width is the set of all points which lie on or between𝑤
two parallel lines that are a distance apart. Let be a set of points on the plane such that any three𝑤 𝑆 𝑛 ≥ 3
different points of can be covered by a strip of width 1. Prove that can be covered by a strip of width 2.𝑆 𝑆

Problem 9.7. (Canadian IMO Training 2009) Each point on the circumference of a circle is coloured either red
or blue. Prove that there exist three distinct points on this circumference , , all of the same colour such that𝑋 𝑌 𝑍

.|𝑋𝑌| = |𝑋𝑍|

Problem 9.8. (SMT-Finals 2015) Given is a finite amount of points in the plane and an equal amount of rays
with the origin as their initial point. Is it always possible to pair up points and rays such that the translated rays
beginning in their respective points do not intersect each other?

Problem 9.9. (Blatic Way 2020) Alice and Bob are playing hide and seek. Initially, Bob chooses a secret fixed
point in the unit square. Then Alice chooses a sequence of points in the plane. After choosing𝐵 𝑃

0
, 𝑃

1
,..., 𝑃

𝑛
𝑃

𝑘
(but before choosing ) for , Bob tells “warmer” if is closer to than , otherwise he says𝑃

𝑘+1
𝑘 > 1 𝑃

𝑘
𝐵 𝑃

𝑘−1
“colder”. After Alice has chosen and heard Bob’s answer, Alice chooses a final point . Alice wins if the𝑃

𝑛
𝐴

distance is at most , otherwise Bob wins. Show that if , Alice cannot guarantee a win.𝐴𝐵
1

2020 𝑛 = 18

Problem 9.10. (IMO 2011) Let be a finite set of at least 2 points in the plane. Assume that no three points of𝑆 𝑆
are collinear. A windmill is a process that starts with a line going through a single point . The lineℓ 𝑃 ∈ 𝑆
rotates clockwise about the pivot until the first time that the line meets some other point belonging to . This𝑃 𝑆
point, , takes over as the new pivot, and the line now rotates clockwise around , until it next meets a point of𝑄 𝑄

. This process continues indefinitely.𝑆
Show that we can choose a point in and a line going through such that the resulting windmill uses each𝑃 𝑆 ℓ 𝑃
point of as a pivot infinitely many times.𝑆
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